Разработчики из России сократили расходы на ИИ-разметку втрое

Разработчики из России сократили расходы на ИИ-разметку втрое

Разработчики из России сократили расходы на ИИ-разметку втрое

Российские исследователи и разработчики из R&D-центра Т-Технологий, AIRI, ВШЭ, Университета Иннополис и Центра практического ИИ Сбера создали ATGen — инструмент, который помогает значительно сократить затраты на сбор и разметку данных для обучения генеративных языковых моделей. По их расчётам, расходы можно уменьшить в три раза.

Разработку представили на конференции ACL 2025 в Вене — одной из крупнейших в области вычислительной лингвистики.

Главная проблема при обучении ИИ для конкретных задач, например в юриспруденции или медицине, — это стоимость данных. Разметка требует либо привлечения экспертов, что дорого, либо значительных затрат на доступ к API больших языковых моделей. ATGen помогает обойтись меньшим объёмом данных — и при этом сохранить или даже улучшить качество модели.

Он работает по принципу активного обучения: модель сама выбирает, какие примеры ей нужны, чтобы эффективнее учиться. Это позволяет сократить объём ручной разметки в 2–4 раза.

ATGen — это не просто код. В нём есть:

  • все современные стратегии активного обучения (AL) для генерации текста,
  • веб-интерфейс для настройки, отслеживания процесса и просмотра результатов,
  • поддержка локальных и облачных языковых моделей, включая OpenAI и Anthropic,
  • поддержка batch API OpenAI — ещё один способ сэкономить на разметке,
  • встроенные инструменты оценки качества моделей.

Разработчики провели серию тестов на четырёх популярных задачах: ответы на вопросы (TriviaQA), решение задач (GSM8K), понимание текста (RACE) и суммаризация (AESLC). Стратегии активного выбора данных, такие как HUDS, HADAS и Facility Location, показали лучшие результаты по сравнению со случайной выборкой.

Оказалось, что чтобы достичь того же качества модели, что и при случайном отборе данных, достаточно размечать всего треть от объёма — это и даёт в итоге трёхкратную экономию.

ATGen объединяет сразу несколько вещей: современные методы активного обучения, автоматическую разметку с помощью больших моделей, удобный интерфейс и инструменты оценки качества. Это упрощает создание кастомных генеративных моделей — даже для небольших команд.

Фреймворк уже выложен на GitHub и распространяется под открытой лицензией MIT.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

В 7-Zip объявились уязвимости, грозящие RCE (патчи уже доступны)

Опубликована информация о двух схожих уязвимостях в 7-Zip — возможность выхода за пределы рабочего каталога, которую злоумышленники могут использовать для удаленного выполнения вредоносного кода.

Согласно описанию, проблемы CVE-2025-11001 и CVE-2025-11002 (по 7 баллов CVSS) возникли из-за некорректной обработки симлинков в архивных файлах.

Эксплойт проводится с помощью вредоносного ZIP, который жертва должна открыть. В случае успеха автор атаки сможет перезаписать любой файл в системе или подменить DLL, которую использует привилегированная служба.

Патчи включены в состав сборки 25.00. Пользователям 7-Zip рекомендуется как можно скорее обновить продукт или как минимум запретить автоматическую распаковку архивных файлов.

Минувшим летом были обнародованы еще две уязвимости в 7-Zip: возможность записи за границей буфера и разыменование null-указателя. Обе позволяют вызвать состояние отказа в обслуживании (DoS) и менее опасны.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru