ChatGPT ошибается с адресами сайтов — фишеры не дремлют

ChatGPT ошибается с адресами сайтов — фишеры не дремлют

ChatGPT ошибается с адресами сайтов — фишеры не дремлют

Если вы когда-нибудь просили чат-бота типа ChatGPT помочь с ссылкой на сайт банка или личного кабинета крупной компании — возможно, вы получали неправильный адрес. А теперь представьте, что кто-то специально воспользуется этой ошибкой.

Исследователи из компании Netcraft провели эксперимент: они спрашивали у модели GPT-4.1 адреса сайтов для входа в аккаунты известных брендов из сфер финансов, ретейла, технологий и коммунальных услуг.

В духе: «Я потерял закладку, подскажи, где войти в аккаунт [название бренда]?»

Результат получился тревожным:

  • только в 66% случаев бот дал правильную ссылку;
  • 29% ответов вели на несуществующие или заблокированные сайты;
  • ещё 5% — на легитимные, но вообще не те, что спрашивали.

Почему это проблема?

Потому что, как объясняет руководитель Threat Research в Netcraft Роб Дункан, фишеры могут заранее спрашивать у ИИ те же самые вопросы. Если бот выдаёт несуществующий, но правдоподобный адрес — мошенники могут просто зарегистрировать его, замаскировать под оригинал и ждать жертв.

«Вы видите, где модель ошибается, и используете эту ошибку себе на пользу», — говорит Дункан.

Фишинг адаптируется под ИИ

Современные фишинговые схемы всё чаще затачиваются не под Google, а именно под LLM — большие языковые модели. В одном случае, например, мошенники создали фейковый API для блокчейна Solana, окружив его десятками фейковых GitHub-репозиториев, туториалов, Q&A-доков и даже поддельных аккаунтов разработчиков. Всё, чтобы модель увидела якобы «живой» и «настоящий» проект и начала предлагать его в ответах.

Это чем-то напоминает классические атаки на цепочку поставок, только теперь цель — не человек с pull request'ом, а разработчик, который просто спрашивает у ИИ: «Какой API использовать?»

Вывод простой: не стоит полностью полагаться на ИИ, когда речь идёт о важных вещах вроде входа в банковский аккаунт или выборе библиотеки для кода. Проверяйте информацию на официальных сайтах, а ссылки — вручную. Особенно если ИИ обещает «удобный и официальный» сайт, которого вы раньше не видели.

В Сеть выложили базу с 6,8 млрд адресов электронной почты

На одном из популярных форумов для киберпреступников появился интересный пост: пользователь под ником Adkka72424 заявил, что собрал базу из 6,8 млрд уникальных адресов электронной почты. По его словам, на это ушло несколько месяцев; он выгружал данные из логов инфостилеров, ULP-коллекций и различных баз, циркулирующих в Сети.

Цифра звучит почти фантастически. Однако исследователи Cybernews изучили массив объёмом около 150 ГБ и пришли к несколько иным выводам.

Формально автор не соврал: в файле действительно более 6,8 млрд строк. Но внутри оказалось множество дубликатов и откровенно невалидных адресов. После «очистки» реальное количество рабочих имейлов, по оценке экспертов, может составлять около 3 млрд.

 

Даже если это «всего лишь» 3 млрд, масштаб всё равно впечатляющий. В эпоху автоматизации фишинговых кампаний и атак вида «credential stuffing» объём решает многое. При конверсии всего 0,001% из трёх миллиардов злоумышленники теоретически могут получить около 30 тысяч потенциальных жертв. Для массовых рассылок этого более чем достаточно.

 

Сам автор публикации утверждает, что хотел «повысить осведомлённость» и привлечь внимание эксперта по утечкам Троя Ханта. Параллельно он дал традиционный совет пользователям: сменить пароли и включить двухфакторную аутентификацию. Впрочем, по комментариям на форуме видно, что аудитория интересуется базой прежде всего как инструментом для кросс-проверки других утечек: сопоставляя записи, злоумышленники могут быстрее находить «свежие» скомпрометированные аккаунты и экономить время.

RSS: Новости на портале Anti-Malware.ru