DarkMind: специалисты продемонстрировали манипулятивную атаку на LLM

DarkMind: специалисты продемонстрировали манипулятивную атаку на LLM

DarkMind: специалисты продемонстрировали манипулятивную атаку на LLM

Исследователи из Университета Сент-Луиса продемонстрировали атаку на большие языковые модели (LLM), позволяющую манипулировать процессами рассуждения нейросетей. В отличие от других методов атак на искусственный интеллект, эта уязвимость не обнаруживается стандартными средствами и не требует изменения запросов.

Авторы исследования, Зен Го и Реза Турани, назвали свою разработку DarkMind. Техника базируется на уязвимостях парадигмы «цепочки рассуждений» (Chain-of-Thought, CoT), используемой в таких моделях, как ChatGPT, GPT-4, O1 и LLaMA-3.

DarkMind внедряет скрытые триггеры в приложения, работающие поверх языковых моделей, что делает атаку практически незаметной при обычном использовании. Выявить её сложно даже в приложениях, которых уже насчитывается сотни тысяч, так как она активируется только при срабатывании определенных шаблонов рассуждений.

При этом меры защиты, предназначенные для противодействия другим типам манипулятивных атак, не обнаруживают DarkMind, и вредоносная активность выявляется лишь после её активации.

Исследователи также установили, что чем совершеннее LLM, тем более они уязвимы к данной технике атак. Более того, для её применения не требуется модификация запросов или алгоритмов работы моделей, что делает технологию простой в использовании и потенциально массовой, особенно в таких секторах, как финансы и медицина, где LLM активно внедряются.

Зен Го и Реза Турани сообщили, что работают над защитными мерами, направленными на предотвращение подобных атак, и призвали разработчиков усилить встроенные механизмы защиты от манипулятивных воздействий на LLM. Однако, по мнению Microsoft, создать полностью безопасные системы на базе генеративного ИИ невозможно.

Злоумышленники научились использовать умные кормушки для слежки

Злоумышленники могут использовать взломанные умные кормушки для животных для слежки за владельцами. Для получения информации применяются встроенные в устройства микрофоны и видеокамеры. Получив несанкционированный доступ, атакующие способны наблюдать за происходящим в помещении и перехватывать данные.

Об использовании таких устройств в криминальных целях рассказал агентству «Прайм» эксперт Kaspersky ICS CERT Владимир Дащенко.

«Это уже не гипотетическая угроза: известны случаи взлома домашних камер, видеонянь, кормушек для животных и других умных приборов», — предупреждает эксперт.

По словам Владимира Дащенко, вопросам кибербезопасности таких устройств часто не уделяется должного внимания. Между тем любое оборудование с доступом в интернет может стать точкой входа для злоумышленников.

Скомпрометированные устройства могут использоваться и для атак на другие элементы домашней сети — например, смартфоны или компьютеры. Кроме того, они способны становиться частью ботнетов, применяемых для DDoS-атак или майнинга криптовалют. На подобные риски почти год назад обращало внимание МВД России.

Среди признаков возможной компрометации умных устройств эксперт называет самопроизвольные отключения, резкие изменения сетевой активности, появление сообщений об ошибках или другие нетипичные события.

RSS: Новости на портале Anti-Malware.ru