Песочница ChatGPT открывает доступ к файлам ОС и внутренней кухне LLM

Песочница ChatGPT открывает доступ к файлам ОС и внутренней кухне LLM

Песочница ChatGPT открывает доступ к файлам ОС и внутренней кухне LLM

Как оказалось, ИИ-бот OpenAI при правильных наводящих вопросах может слить дерево файлов и папок хост-системы, а также плейбук с правилами общения с пользователями. Возможны также загрузка и запуск программ, но только в пределах изолированной среды.

Недокументированные возможности песочницы ChatGPT, грозящие раскрытием конфиденциальной информации, обнаружил эксперт Mozilla Марко Фигероа (Marco Figueroa). Разработчики приняли отчет к сведению, но ужесточать ограничения по доступу не планируют.

В ходе работы над Python-проектом умный помощник выдал исследователю ошибку «directory not found» («каталог не найден»), которая и раскрыла наличие доступа к файловой системе. Заинтересовавшись, Фигероа попросил перечислить файлы, вставив в запрос строку list files (англоязычный аналог Linux-команды ls).

В ответ ChatGPT вывел список файлов и директорий, характерных для Linux: bin, dev, tmp, sys и т. п. Экспериментатор пришел к выводу, что ИИ-бот работал на каком-то дистрибутиве, скорее всего Debian, в контейнерной среде; конфигурационные данные содержались в папке /home/sandbox/.openai_internal/.

Также выяснилось, что расширенный доступ позволяет выполнять действия над файлами: загружать, скачивать, перемещать, запускать на исполнение. Так, Фигероа удалось загрузить и запустить в песочнице простенький Python-скрипт, выводящий на экран приветствие «Hello, World!» (в BleepingComputer поставили такой же опыт со сценарием поиска файлов TXT).

Подобные возможности, по словам эксперта, повышают прозрачность и функциональность, но создают риск злоупотреблений, который, впрочем, смягчает надежная изоляция рабочей среды.

Фигероа также смог, используя инъекцию стимула, скачать плейбук ChatGPT, содержащий директивы по взаимодействию с пользователями. Знакомство с внутренними механизмами ИИ-модели, по мнению эксперта, облегчает внедрение вредоносных подсказок и обход ограничений LLM.

«В документации эти возможности не отражены, — подчеркнул исследователь, комментируя свои находки для Dark Reading. — Полагаю, это просто недоработка проекта. В какой-то момент объявится 0-day, и тогда случится беда».

В ответ на запрос репортера представитель OpenAI заявил, что находки эксперта на уязвимость не тянут, и в подобном поведении ничего неожиданного нет.

Нейросеть для ЖКХ научилась материться в первый месяц обучения

Разработчикам отечественного голосового помощника для сферы ЖКХ пришлось «переучивать» систему после того, как в процессе обучения бот освоил ненормативную лексику. Этот случай наглядно показал, насколько критично качество данных, на которых обучаются нейросети.

О возникшей проблеме рассказал ТАСС президент Национального объединения организаций в сфере технологий информационного моделирования (НОТИМ) Михаил Викторов на Сибирском строительном форуме, который проходит в Новосибирске.

«Приведу забавный случай: нейросеть учится, и буквально уже в первый месяц разработчики обнаружили такую коллизию — нейросеть научилась мату. Как говорится, с кем поведёшься, от того и наберёшься. Эту проблему, конечно, пришлось устранять. Но это в том числе показатель активного взаимодействия с нашими гражданами», — рассказал Михаил Викторов.

При этом, по его словам, внедрение ботов позволило сократить число операторов кол-центров в 5–6 раз без потери качества обслуживания. Нейросетевые инструменты способны обрабатывать до 90% входящих обращений.

Уровень удовлетворённости качеством обслуживания, по оценке Викторова, составляет около 80%. Передавать звонки операторам целесообразно лишь в экстренных случаях — например, при аварийных ситуациях.

Эксперты ранее отмечали, что именно данные, на которых обучается ИИ, являются ключевой причиной появления некорректных или предвзятых ответов нейросетевых инструментов.

RSS: Новости на портале Anti-Malware.ru