Российские исследователи и разработчики из R&D-центра Т-Технологий, AIRI, ВШЭ, Университета Иннополис и Центра практического ИИ Сбера создали ATGen — инструмент, который помогает значительно сократить затраты на сбор и разметку данных для обучения генеративных языковых моделей. По их расчётам, расходы можно уменьшить в три раза.
Разработку представили на конференции ACL 2025 в Вене — одной из крупнейших в области вычислительной лингвистики.
Главная проблема при обучении ИИ для конкретных задач, например в юриспруденции или медицине, — это стоимость данных. Разметка требует либо привлечения экспертов, что дорого, либо значительных затрат на доступ к API больших языковых моделей. ATGen помогает обойтись меньшим объёмом данных — и при этом сохранить или даже улучшить качество модели.
Он работает по принципу активного обучения: модель сама выбирает, какие примеры ей нужны, чтобы эффективнее учиться. Это позволяет сократить объём ручной разметки в 2–4 раза.
ATGen — это не просто код. В нём есть:
- все современные стратегии активного обучения (AL) для генерации текста,
- веб-интерфейс для настройки, отслеживания процесса и просмотра результатов,
- поддержка локальных и облачных языковых моделей, включая OpenAI и Anthropic,
- поддержка batch API OpenAI — ещё один способ сэкономить на разметке,
- встроенные инструменты оценки качества моделей.
Разработчики провели серию тестов на четырёх популярных задачах: ответы на вопросы (TriviaQA), решение задач (GSM8K), понимание текста (RACE) и суммаризация (AESLC). Стратегии активного выбора данных, такие как HUDS, HADAS и Facility Location, показали лучшие результаты по сравнению со случайной выборкой.
Оказалось, что чтобы достичь того же качества модели, что и при случайном отборе данных, достаточно размечать всего треть от объёма — это и даёт в итоге трёхкратную экономию.
ATGen объединяет сразу несколько вещей: современные методы активного обучения, автоматическую разметку с помощью больших моделей, удобный интерфейс и инструменты оценки качества. Это упрощает создание кастомных генеративных моделей — даже для небольших команд.
Фреймворк уже выложен на GitHub и распространяется под открытой лицензией MIT.