Вышел MaxPatrol SIEM 8.2 с новыми сценариями использования ML-алгоритмов

Вышел MaxPatrol SIEM 8.2 с новыми сценариями использования ML-алгоритмов

Вышел MaxPatrol SIEM 8.2 с новыми сценариями использования ML-алгоритмов

Positive Technologies выпустила новую версию системы мониторинга событий ИБ и управления инцидентами — MaxPatrol SIEM 8.2. Аналитики теперь смогут эффективнее выявлять атаки и снять с себя часть рутинных задач, повышая скорость реакции на инциденты. В версии 8.2 также расширены сценарии использования алгоритмов машинного обучения.

Главное в релизе MaxPatrol SIEM 8.2 — использование ML-алгоритмов не только для получения second opinion (второго мнения), но и для выявления целенаправленных атак и неизвестных уязвимостей и угроз.

Обновлен мониторинг источников, что позволяет исключить слепые зоны и обеспечить непрерывный контроль инфраструктуры. Кроме того, появилась возможность хранить в два раза больше данных на вычислительных ресурсах, аналогичных ресурсам open-source-решений, по всей геораспределенной инфраструктуре и при этом осуществлять централизованный поиск из единого окна на базе СУБД LogSpace.

«Мы повышаем результативность MaxPatrol SIEM. Каждый релиз направлен на повышение удобства и эффективности работы операторов в части обнаружения атак и ориентирован на снижение нагрузки на специалистов. У продуктов этого класса результативность складывается из нескольких составляющих: система знает, где искать, что искать, а также подсказывает, что делать с найденным. Обновленный мониторинг источников, дальнейшее развитие ML-алгоритмов, горизонтальное масштабирование LogSpace вместе с уже известными пользователям функциями гарантируют качественный детект и помогают операторам быстрее и правильнее среагировать на атаку», — комментирует Иван Прохоров, руководитель продукта MaxPatrol SIEM, Positive Technologies.

Еще с версии 8.0 MaxPatrol SIEM получил интеграцию с ML-модулем поведенческого анализа — BAD (Behavioral Anomaly Detection). В своем первом релизе ML-помощник работал как система second opinion: применяя машинное обучение, модуль подтверждал срабатывание правил корреляции.

Таким образом когнитивная нагрузка аналитиков снижалась, что позволяло им быстрее и точнее принимать решения по инцидентам ИБ. В новой версии интеграция с BAD расширилась: ML-алгоритмы помогают выявлять даже неизвестные атаки злоумышленников и те, которые направлены на обход стандартных правил корреляции.

В модуль встроено порядка 50 моделей машинного обучения, разработанных на основе 20-летнего опыта Positive Technologies в расследовании инцидентов. BAD собирает и анализирует данные о событиях, пользователях, процессах в контексте событий и присваивает им определенный уровень риска (risk score). Операторы смогут обнаруживать аномалии не только в событиях Windows, но и Unix-подобных систем и сетевого оборудования.

Чтобы не пропустить инцидент ИБ, необходимо непрерывно отслеживать состояние источников событий, потока и качества данных от них, исключая слепые зоны. Обновленный мониторинг источников в MaxPatrol SIEM 8.2 позволяет контролировать полноту и качество сбора данных со всех источников.

Так, например, SIEM-система среди прочего обнаруживает те источники, для которых по каким-либо причинам не настроен мониторинг (возможное нарушение регламента ИБ). Новая функциональность также подскажет аналитику, как следует настроить мониторинг, чтобы обеспечить максимально качественное обнаружение угроз. MaxPatrol SIEM содержит экспертные знания о том, как правильно отслеживать более 350 источников событий и какие требования к потоку событий (допустимый диапазон, отклонение от среднего) и к наличию необходимых идентификаторов в нем необходимо соблюдать. Рекомендации обновляются регулярно на основе опыта специалистов экспертного центра безопасности Positive Technologies (PT Expert Security Center).

Ряд значимых обновлений коснулись СУБД LogSpace, разработанной специально для хранения больших объемов информации о событиях ИБ и ИТ из разных источников. Теперь LogSpace доступна для организаций с географически распределенными инфраструктурами.

Новая версия, поддерживающая горизонтальное масштабирование, позволяет в одном приложении фильтровать события, которые собираются, обрабатываются и хранятся в разных конвейерах. Благодаря поддержке горячего и теплого хранения стоимость долгосрочного хранения событий сокращается до четырех раз, при этом сохраняется возможность их оперативного анализа.

Злоумышленники научились использовать умные кормушки для слежки

Злоумышленники могут использовать взломанные умные кормушки для животных для слежки за владельцами. Для получения информации применяются встроенные в устройства микрофоны и видеокамеры. Получив несанкционированный доступ, атакующие способны наблюдать за происходящим в помещении и перехватывать данные.

Об использовании таких устройств в криминальных целях рассказал агентству «Прайм» эксперт Kaspersky ICS CERT Владимир Дащенко.

«Это уже не гипотетическая угроза: известны случаи взлома домашних камер, видеонянь, кормушек для животных и других умных приборов», — предупреждает эксперт.

По словам Владимира Дащенко, вопросам кибербезопасности таких устройств часто не уделяется должного внимания. Между тем любое оборудование с доступом в интернет может стать точкой входа для злоумышленников.

Скомпрометированные устройства могут использоваться и для атак на другие элементы домашней сети — например, смартфоны или компьютеры. Кроме того, они способны становиться частью ботнетов, применяемых для DDoS-атак или майнинга криптовалют. На подобные риски почти год назад обращало внимание МВД России.

Среди признаков возможной компрометации умных устройств эксперт называет самопроизвольные отключения, резкие изменения сетевой активности, появление сообщений об ошибках или другие нетипичные события.

RSS: Новости на портале Anti-Malware.ru