ИИ-профайлер помог Тинькофф Банку сократить число дропов в 2 раза

ИИ-профайлер помог Тинькофф Банку сократить число дропов в 2 раза

ИИ-профайлер помог Тинькофф Банку сократить число дропов в 2 раза

Созданная в «Тинькофф» система для выявления дропов использует ИИ-технологии и определяет подозрительное поведение по 1 тыс. разных факторов. За год работы умного помощника число счетов, на которые мошенники выводят средства жертв, сократилось в два раза.

Чтобы составить поведенческий портрет дропа, специалисты финансовой организации проанализировали миллионы операций клиентов. Как оказалось, на мошенничество могут указывать перепривязка карты к другому номеру телефона, поступление мелких сумм сразу после открытия счета, переводы по реквизитам, уже засветившимся в схемах обмана, и множество других, менее явных признаков.

Новый антифрод работает в режиме реального времени. После проверки результатов дежурный сотрудник может ограничить банковские обслуживание или провести дополнительное расследование.

«Благодаря работе системы удалось за год снизить количество дропов в два раза, — заявил журналистам руководитель центра экосистемной защиты «Тинькофф» Олег Замиралов. — А проактивное ограничение действий по счетам дропов в 2,5 раза уменьшило потери из-за их недобросовестной деятельности».

Аналитики также заметили, что мошенники стали чаще вербовать для таких целей несовершеннолетних. С помощью ИИ выявлено 66 тыс. счетов, открытых лицами моложе 18 лет и проданных аферистам.

Тревожную тенденцию недавно обсуждали на Форуме безопасного интернета в Москве. Представитель МВД огласил число киберпреступлений, совершенных в 2023 году подростками, — 4 тыс. против 54 в 2020-м.

Таких пособников легче выявить и призвать к ответу, чем нанимателей. Так, недавно в московском Зеленограде были задержаны четверо подозреваемых в содействии телефонным мошенникам.

По версии следствия, их использовали как дропов в рамках схемы, с помощью которой у местной жительницы суммарно выманили 20 млн рублей (поверив аферистам, жертва добровольно совершала переводы на «безопасный» счет). Уголовное дело возбуждено по признакам преступления, предусмотренного ч. 4 ст. 159 УК РФ (мошенничество в составе ОПГ либо в крупном размере, до 10 лет лишения свободы со штрафом до 1 млн рублей).

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru