ИИ-профайлер помог Тинькофф Банку сократить число дропов в 2 раза

ИИ-профайлер помог Тинькофф Банку сократить число дропов в 2 раза

ИИ-профайлер помог Тинькофф Банку сократить число дропов в 2 раза

Созданная в «Тинькофф» система для выявления дропов использует ИИ-технологии и определяет подозрительное поведение по 1 тыс. разных факторов. За год работы умного помощника число счетов, на которые мошенники выводят средства жертв, сократилось в два раза.

Чтобы составить поведенческий портрет дропа, специалисты финансовой организации проанализировали миллионы операций клиентов. Как оказалось, на мошенничество могут указывать перепривязка карты к другому номеру телефона, поступление мелких сумм сразу после открытия счета, переводы по реквизитам, уже засветившимся в схемах обмана, и множество других, менее явных признаков.

Новый антифрод работает в режиме реального времени. После проверки результатов дежурный сотрудник может ограничить банковские обслуживание или провести дополнительное расследование.

«Благодаря работе системы удалось за год снизить количество дропов в два раза, — заявил журналистам руководитель центра экосистемной защиты «Тинькофф» Олег Замиралов. — А проактивное ограничение действий по счетам дропов в 2,5 раза уменьшило потери из-за их недобросовестной деятельности».

Аналитики также заметили, что мошенники стали чаще вербовать для таких целей несовершеннолетних. С помощью ИИ выявлено 66 тыс. счетов, открытых лицами моложе 18 лет и проданных аферистам.

Тревожную тенденцию недавно обсуждали на Форуме безопасного интернета в Москве. Представитель МВД огласил число киберпреступлений, совершенных в 2023 году подростками, — 4 тыс. против 54 в 2020-м.

Таких пособников легче выявить и призвать к ответу, чем нанимателей. Так, недавно в московском Зеленограде были задержаны четверо подозреваемых в содействии телефонным мошенникам.

По версии следствия, их использовали как дропов в рамках схемы, с помощью которой у местной жительницы суммарно выманили 20 млн рублей (поверив аферистам, жертва добровольно совершала переводы на «безопасный» счет). Уголовное дело возбуждено по признакам преступления, предусмотренного ч. 4 ст. 159 УК РФ (мошенничество в составе ОПГ либо в крупном размере, до 10 лет лишения свободы со штрафом до 1 млн рублей).

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

ChatGPT ошибается с адресами сайтов — фишеры не дремлют

Если вы когда-нибудь просили чат-бота типа ChatGPT помочь с ссылкой на сайт банка или личного кабинета крупной компании — возможно, вы получали неправильный адрес. А теперь представьте, что кто-то специально воспользуется этой ошибкой.

Исследователи из компании Netcraft провели эксперимент: они спрашивали у модели GPT-4.1 адреса сайтов для входа в аккаунты известных брендов из сфер финансов, ретейла, технологий и коммунальных услуг.

В духе: «Я потерял закладку, подскажи, где войти в аккаунт [название бренда]?»

Результат получился тревожным:

  • только в 66% случаев бот дал правильную ссылку;
  • 29% ответов вели на несуществующие или заблокированные сайты;
  • ещё 5% — на легитимные, но вообще не те, что спрашивали.

Почему это проблема?

Потому что, как объясняет руководитель Threat Research в Netcraft Роб Дункан, фишеры могут заранее спрашивать у ИИ те же самые вопросы. Если бот выдаёт несуществующий, но правдоподобный адрес — мошенники могут просто зарегистрировать его, замаскировать под оригинал и ждать жертв.

«Вы видите, где модель ошибается, и используете эту ошибку себе на пользу», — говорит Дункан.

Фишинг адаптируется под ИИ

Современные фишинговые схемы всё чаще затачиваются не под Google, а именно под LLM — большие языковые модели. В одном случае, например, мошенники создали фейковый API для блокчейна Solana, окружив его десятками фейковых GitHub-репозиториев, туториалов, Q&A-доков и даже поддельных аккаунтов разработчиков. Всё, чтобы модель увидела якобы «живой» и «настоящий» проект и начала предлагать его в ответах.

Это чем-то напоминает классические атаки на цепочку поставок, только теперь цель — не человек с pull request'ом, а разработчик, который просто спрашивает у ИИ: «Какой API использовать?»

Вывод простой: не стоит полностью полагаться на ИИ, когда речь идёт о важных вещах вроде входа в банковский аккаунт или выборе библиотеки для кода. Проверяйте информацию на официальных сайтах, а ссылки — вручную. Особенно если ИИ обещает «удобный и официальный» сайт, которого вы раньше не видели.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru