Создан эффективный стегоалгоритм для безопасной передачи данных

Создан эффективный стегоалгоритм для безопасной передачи данных

Создан эффективный стегоалгоритм для безопасной передачи данных

Команда исследователей из Оксфордского университета и Университета Карнеги – Меллона разработала алгоритм стеганографического сокрытия информации, способный обеспечить безопасность сторонам тайного обмена данными.

Тестирование показало эффективность кодирования до 40% выше в сравнении с аналогами. Достоинствами разработки также являются возможность масштабирования и широкий спектр применения.

Стеганография как способ тайнописи используется уже более 25 лет, однако существующие методы обычно не гарантируют безопасность пользователям: их выдают еле заметные изменения в дистрибуции безобидного контента.

Университетские исследователи прежде всего удостоверились в том, что стегопроцедура обеспечивает высокую безопасность лишь в том случае, когда вероятностное распределение данных в шифротексте (его можно равномерно рандомизировать) и в маскировочном контенте связаны. Как оказалось, максимально повысить эффективность такой процедуры можно, сведя к нулю взаимную энтропию.

Созданный в ходе исследования алгоритм итеративно уменьшает энтропию взаимосвязанных систем, позволяя повысить общую информативность при сохранении индивидуальных дистрибуций. Статистический стеганализ при этом разницы не выявит.

Для тестирования были выбраны разные модели автогенераторов контента: GPT-2 (синтезатор текста), WaveRNN (преобразователь текста в речь), Image Transfomer (преобразователь изображений). Новый алгоритм в целом показал намного более высокую эффективность кодирования (до 40%), чем существующие аналоги, а значит, позволяет скрыть больше информации в заданном объеме.

«Наш метод можно использовать с любым софтом, автоматически генерирующим контент, к примеру, в вероятностных видеофильтрах или генераторах мемов, — комментирует соруководитель исследования, д-р Кристиан Шрёдер де Витт (Christian Schroeder de Witt Шрёдер) из Оксфордского университета. — Это качество очень выручит журналистов и гуманитарных работников в странах, где шифрование запрещено. Однако пользователю придется принять меры предосторожности: любая технология шифрования может оказаться уязвимой к атакам по стороннему каналу, таким как обнаружение стегоприложения на телефоне пользователя».

Исследователи подали заявку на патент, но собираются также распространять разработку под свободной лицензией при условии некоммерческого и ответственного использования. Препринт отчета доступен в PDF-формате на arXiv.org, результаты исследования будут оглашены в мае на 11-й Международной конференции по представлениям обучения (ICLR 2023).

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru