Власти США построят ИИ-песочницу для оттачивания навыков киберобороны

Власти США построят ИИ-песочницу для оттачивания навыков киберобороны

Власти США построят ИИ-песочницу для оттачивания навыков киберобороны

Американское Агентство по кибербезопасности и защите инфраструктуры (CISA) и директорат науки и технологий в составе Министерства внутренней безопасности США запустили проект по созданию новой среды аналитики, способной ускорить принятие решений по защите инфраструктуры в условиях быстро меняющегося ландшафта киберугроз.

Итоговая платформа CAP-M (Advanced Analytics Platform for Machine Learning, ранее CyLab) должна обеспечить тренировочную площадку для госструктур и частных организаций, где можно будет обмениваться опытом отражения кибератак и опробовать новейшие методы и инструменты анализа данных, в том числе полагающиеся на ИИ и машинное обучение.

Согласно утвержденному плану (PDF), работа над проектом включает создание прототипа многооблачной приватной среды для коллективной работы, исследование передовых технологий анализа данных, собранных из различных источников, а также разработку и автоматизацию рабочего цикла анализатора, использующего алгоритмы машинного обучения.

«Полномасштабная CAP-M будет включать многооблачную среду и множество структур данных — логическую базу данных, облегчающую доступ к наборам данных CISA, и приближенную к рабочим условиям среду для тестирования реальных решений», — сказано в анонсе правительства США.

Информация, собранная в ходе экспериментов, будет расшарена в госсекторе, академических кругах и среди представителей частного бизнеса. Сроки реализации проекта пока не назначены, и отсутствие конкретики, а также всеобъемлющие цели вызвали неоднозначную реакцию в ИБ-сообществе. 

Опрошенные The Register специалисты отметили, что в лабораторных условиях редко воспроизводятся сложность и фоновый шум реальной рабочей среды, поэтому CAP-M может оказаться хорошим решением этой проблемы. Вместе с тем использование ИИ и машинного обучения потребует солидного массива данных для тренировки системы; не исключено, что с этой целью придется создать автомат для проведения атак, особую форму алертов и новые способы распознавания ложных сигналов.

Многим импонирует идея объединить разрозненные ИБ-исследования и разработки в одном месте и сделать их общим достоянием, однако экспертов тревожит вопрос безопасности подобной платформы. Спонсируемые государством хакеры смогут изучить сильные и слабые стороны CAP-M и создать эксплойты или навести белый шум, способный ввести в заблуждение ИИ-анализаторы.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru