Ученые предложили выявлять голосовые дипфейки с помощью флюидодинамики

Ученые предложили выявлять голосовые дипфейки с помощью флюидодинамики

Ученые предложили выявлять голосовые дипфейки с помощью флюидодинамики

В университете Флориды изучили достижения артикуляционной фонетики и разработали новую технику распознавания дипфейк-аудио — по отсутствию ограничений, влияющих на работу голосового аппарата человека. Созданный в ходе исследования детектор способен по одной фразе определить подмену с точностью 92,4%.

Создание дипфейков стало возможным лишь с развитием технологий машинного обучения. Новый инструментарий, позволяющий создавать убедительные имитации, уже по достоинству оценили злоумышленники: собрав ПДн из открытых источников, они проводят пробные атаки, в том числе для получения финансовой выгоды.

Инциденты с использованием дипфейков снижают доверие к цифровым средствам коммуникации, но пока редки. Тем не менее, новую угрозу нельзя сбрасывать со счетов, и эксперты озаботились совершенствованием средств подтверждения личности.

Выявить поддельное видео, созданное с помощью ИИ, можно путем анализа визуальных артефактов — по разнице в мимике (частоте моргания, например) или различию приметных частей лица (подбородка, бровей, скул, усов и бороды, веснушек, родимых пятен). Качественный синтез речи, используемый с неблаговидной целью, представляет более серьезную угрозу, так как дистанционное общение зачастую происходит только вербально — по телефону, с использованием радиосвязи или аудиозаписи.

Защититься от таких высокотехнологичных атак, по мнению ученых из Флориды, можно с помощью газодинамики — оценкой речевого тракта говорящего, который можно воссоздать средствами моделирования. Дело в том, что на человеческую речь влияют анатомические особенности его голосового аппарата: связок, языка, челюстей, губ. При генерации звуков (фонем) эти участники процесса используются по-разному, но всегда в пределах лимитов, заданных природой.

Исследование показало, что звуковые дипфейки не учитывают такие ограничения. Более того, при реконструкции речевого тракта они показали схожие результаты, далекие от реальности:

 

Способность современного противника ответить на этот вызов университетские исследователи оценили как близкую к нулю. О своем методе выявления дипфейк-аудио они рассказали (PDF) в прошлом месяце на конференции USENIX по безопасности, которая прошла в Бостоне. Созданный в ходе исследования программный код выложен в общий доступ на GitHub.

30-летняя уязвимость в libpng поставила под удар миллионы приложений

Анонсирован выпуск libpng 1.6.55 с патчем для опасной уязвимости, которая была привнесена в код еще на стадии реализации проекта, то есть более 28 лет назад. Пользователям и разработчикам советуют как можно скорее произвести обновление.

Уязвимость-долгожитель в библиотеке для работы с растровой графикой в формате PNG классифицируется как переполнение буфера в куче, зарегистрирована под идентификатором CVE-2026-25646 и получила 8,3 балла по шкале CVSS.

Причиной появления проблемы является некорректная реализация API-функции png_set_dither(), имя которой было со временем изменено на png_set_quantize(). Этот механизм используется при чтении PNG-изображений для уменьшения количества цветов в соответствии с возможностями дисплея.

Переполнение буфера возникает при вызове png_set_quantize() без гистограммы и с палитрой, в два раза превышающей максимум для дисплея пользователя. Функция в результате уходит в бесконечный цикл, и происходит чтение за границей буфера.

Эту ошибку можно использовать с целью вызова состояния отказа в обслуживании (DoS). Теоретически CVE-2026-25646 также позволяет получить закрытую информацию или выполнить вредоносный код, если злоумышленнику удастся внести изменения в структуру памяти до вызова png_set_quantize().

Уязвимости подвержены все версии libpng, с 0.90 beta (а возможно, и с 0.88) до 1.6.54. Ввиду широкого использования библиотеки пользователям настоятельно рекомендуется перейти на сборку 1.6.55 от 10 февраля 2026 года.

RSS: Новости на портале Anti-Malware.ru