Эксперты научились вычислять, что печатает человек во время видеозвонка

Эксперты научились вычислять, что печатает человек во время видеозвонка

Эксперты научились вычислять, что печатает человек во время видеозвонка

Специалисты Техасского и Оклахомского университетов разработали новый вектор атаки, базирующийся на вычислении клавиш, которые нажимает собеседник во время видеозвонка. По словам исследователей, метод сработает и в случае с трансляциями на YouTube или Twitch, требуется лишь одно условие — веб-камера должна захватывать верхнюю часть тела стримера.

Таким образом, эксперты берут за основу движения тела собеседника на другом конце видеозвонка. Соотнося их с видеопотоком, исследователи, по их словам, могут вычислять нажимаемые клавиши.

«Поскольку аппаратное обеспечение для захвата видео встроено практически во все современные девайсы (смартфоны, ноутбуки, планшеты), опасность утечки информации через визуальные каналы стала более реальна. Цель злоумышленников в этом случае — взять за основу язык тела, соотнести его с видеопотоком и вычислить, что жертва набирает на клавиатуре», — пишут специалисты в отчёте (PDF).

Чтобы максимально автоматизировать процесс и добиться более точных результатов, соответствующие кадры можно «скормить» специальному фреймворку, который действует по следующему алгоритму:

  1. Предварительная обработка, в процессе которой удаляется фон и видео конвертируется в оттенки серого. Далее акцент идёт на руки и лицо жертвы и подключается модель FaceBoxes.
  2. Детектирование нажатий клавиш. Здесь алгоритм использует индекс структурного сходства (SSIM, structure similarity), чтобы определить движения тела между последовательными кадрами, когда человек набирал определённый текст.
  3. Предугадывание слов. На этом этапе выделяются специальные кадры, когда собеседник набирал текст, а затем они используются для вычисления конкретного текста с помощью специального алгоритма.

 

Исследователи заявили, что тестировали этот фреймворк на 20 собеседниках (9 женщинах, 11 мужчинах), при этом использовался даже разных софт для видеозвонков: Zoom, Hangouts и Skype. Сначала эксперты задействовали управляемое окружение, а затем — уже произвольное. В последнем случае удалось точно определить 91,1% вводимых имён пользователей и 95,5% адресов электронной почты.

X запретила Grok «раздевать» людей на изображениях после скандала

Платформа X (прежний Twitter) Илона Маска объявила о новых ограничениях для своего ИИ-бота Grok после волны международной критики и расследований, связанных с генерированием непристойных изображений реальных людей — включая женщин и детей. Об этом компания сообщила 14 января.

Поводом стал резонанс вокруг так называемого Spicy Mode, который позволял с помощью простых текстовых запросов «раздевать» людей на фотографиях — например, «надень на неё бикини» или «убери одежду».

Эти возможности вызвали шквал жалоб, блокировки сервиса в отдельных странах и проверку со стороны регуляторов.

В X заявили, что приняли технические меры, чтобы пресечь подобные сценарии. В частности, компания начнёт блокировать по геолокации возможность создавать или редактировать изображения людей в «откровенной одежде» — бикини, нижнем белье и аналогичных образах — в тех юрисдикциях, где такие действия нарушают закон.

«Мы внедрили технологические ограничения, которые не позволяют Grok редактировать изображения реальных людей в откровенной одежде, включая бикини», — говорится в заявлении команды безопасности X.

Ограничения распространяются на всех пользователей, включая платных подписчиков.

Кроме того, в качестве «дополнительного уровня защиты» X решила оставить генерацию и редактирование изображений через Grok только для платных аккаунтов. В компании считают, что это позволит снизить риски злоупотреблений.

На ситуацию уже отреагировали европейские регуляторы. В Еврокомиссии заявили, что внимательно изучают дополнительные меры, принятые X, и проверят, действительно ли они способны защитить пользователей в ЕС. Представитель комиссии Томас Ренье отметил, что речь идёт о реакции на острую критику из-за непристойных изображений.

По данным недавнего исследования некоммерческой организации AI Forensics, более половины из 20 тысяч проанализированных изображений, созданных Grok, показывали людей в минимальном количестве одежды. Большинство из них — женщины, а около 2% персонажей выглядели как несовершеннолетние.

RSS: Новости на портале Anti-Malware.ru