Незащищённый сервер Nissan слил исходный код внутренних разработок

Незащищённый сервер Nissan слил исходный код внутренних разработок

Незащищённый сервер Nissan слил исходный код внутренних разработок

Исходный код мобильных приложений и внутренних инструментов североамериканского представительства компании Nissan оказались в открытом доступе. Проблема в том, что японский автопроизводитель некорректно настроил один из своих Git-серверов.

Как объяснил швейцарский специалист Тилли Коттманн, сотрудники Nissan умудрились оставить открытый Git-сервер, доступ к которому можно было получить с помощью стандартной связки «имя пользователя-пароль» — admin-admin.

Коттманн изучил содержимое репозитория и выяснил, что на незащищённом сервере хранился исходный код следующих разработок автопроизводителя:

  • Мобильных приложений Nissan.
  • Nissan ASIST, инструмента для диагностики (частично).
  • Систем Dealer Business Systems / Dealer Portal.
  • Внутренней библиотеки.
  • Служб Nissan/Infiniti NCAR/ICAR.
  • Инструментов для поиска и удержания клиентов.
  • Инструментов для изучения рынка.
  • Маркетинговых инструментов.
  • Многих других внутренних и бэкенд-инструментов.

 

После того как информация о незащищённом сервере попала в Сеть, неизвестные начали распространять внутренние данные Nissan через торрент-ссылки в Telegram-каналах и на хакерских форумах. Представители японского автопроизводителя уже подтвердили факт утечки и сообщили, что компания расследует инцидент.

ИИ-браузеры не избавятся от угрозы инъекции в промпт, признали в OpenAI

OpenAI признала: инъекции в промпт — одна из самых сложных и живучих угроз для ИИ, и полностью избавиться от неё в ближайшее время не получится. Об этом компания написала в блоге, посвящённом усилению защиты своего ИИ-браузера ChatGPT Atlas.

Инъекции в промпт (prompt injection) — это атаки, при которых ИИ «подсовывают» скрытые инструкции, например в письмах или на веб-страницах, заставляя агента выполнять вредоносные действия.

По сути, это цифровой аналог социальной инженерии — только направленный не на человека, а на ИИ.

«От таких атак, как и от мошенничества в интернете, вряд ли когда-нибудь будет стопроцентная защита», — прямо заявили в OpenAI.

В компании признают, что запуск ИИ в Atlas расширил поверхность атаки. И это не теоретическая угроза: сразу после выхода браузера на рынок исследователи показали, что несколько строк текста в Google Docs могут изменить поведение ИИ-агента.

В тот же день разработчики браузера Brave опубликовали разбор, где объяснили, что косвенные промпт-инъекции — системная проблема для всех ИИ-браузеров, включая Perplexity Comet.

С этим согласны и регуляторы. В начале месяца Национальный центр кибербезопасности Великобритании предупредил, что подобный вектор атаки на генеративные ИИ нельзя устранить, и призвал сосредоточиться не на «полной защите», а на снижении рисков и ущерба.

Решение OpenAI выглядит почти символично — компания создала автоматического атакующего на базе LLM. По сути, это ИИ, обученный с помощью играть роль хакера и искать способы внедрить вредоносные инструкции в агента.

Этот «бот-взломщик» тестирует атаки в симуляции; видит, как целевой ИИ рассуждает и какие действия предпринимает; дорабатывает атаку и повторяет попытки десятки и сотни раз.

 

Такой доступ ко внутренней логике агента недоступен внешним исследователям, поэтому OpenAI рассчитывает находить уязвимости быстрее реальных злоумышленников.

«Наш автоматический атакующий способен уводить агента в сложные вредоносные сценарии, растянутые на десятки и даже сотни шагов», — отмечают в OpenAI.

По словам компании, ИИ уже обнаружил новые векторы атак, которые не выявили ни внутренние Red Team, ни внешние исследователи.

В одном из примеров OpenAI показала, как вредоносное письмо с скрытой инструкцией попадает во входящие. Когда агент позже просматривает почту, он вместо безобидного автоответа отправляет письмо об увольнении. После обновления защиты Atlas смог распознать такую атаку и предупредить пользователя.

OpenAI честно признаёт: идеального решения не существует. Ставка делается на масштабное тестирование, быстрые патчи и многоуровневую защиту — примерно о том же говорят Anthropic и Google, которые фокусируются на архитектурных и политических ограничениях для агентных систем.

При этом OpenAI рекомендует пользователям снижать риски самостоятельно:

  • не давать агенту «широкие полномочия» без чётких инструкций;
  • ограничивать доступ к почте и платёжным данным;
  • подтверждать действия вроде отправки сообщений и переводов вручную.

RSS: Новости на портале Anti-Malware.ru