ABBYY усилила FineReader Engine технологиями искусственного интеллекта

ABBYY усилила FineReader Engine технологиями искусственного интеллекта

ABBYY усилила FineReader Engine технологиями искусственного интеллекта

ABBYY представила новую версию ABBYY FineReader Engine 12 — инструментария разработчика для распознавания информации из отсканированных бумажных и PDF-документов, изображений и фотографий, а также скриншотов с экранов устройств, в том числе промышленных дисплеев.

В новой версии, созданной с применением сверточных нейронных сетей, используются технологии обработки естественного языка и машинного обучения. С их помощью можно определить тип документа не только по внешним признакам, но и по его смыслу, выявляя малейшие отличия между разными категориями.

Среди новых возможностей можно отметить:

  • Интеллектуальная классификация: технология самостоятельно выявляет внешние и смысловые признаки, характерные для документов. Эффективность работы можно регулировать за счет установления баланса между полнотой и точностью классификации.
  • Улучшен анализ и восстановление логической структуры документа с помощью алгоритмов на основе искусственного интеллекта и технологий ABBYY-ADRT (Adaptive Document Recognition Technology). ABBYY FineReader Engine делит документ на отдельные страницы и анализирует оформление и содержание каждой из них. При экспорте в различные форматы файлов получается точно воссозданный документ с полным сохранением элементов форматирования, например, шрифтов, колонтитулов, колонок и др. Значительно улучшено качество восстановления таблиц: ячеек с текстом, пунктирных границ, цветов линий.
  • Более быстрый и расширенный экспорт в XML.
  • Появилась возможность сохранять файлы в форматах HTML 5 и ALTO 3.1. Кроме того, теперь документы можно экспортировать в новые форматы PDF: PDF 2.0, PDF/UA, PDF/A-2b и PDF/A-3b с возможностью поиска, что особенно важно для архивного хранения.
  • Более надежное шифрование: поддержка 256-битного AES-шифрования и поддержка символов юникода позволяет использовать пароли независимо от операционной системы.
  • Поддержка облачных технологий: теперь развернуть приложения с использованием ABBYY FineReader Engine можно и на облачных платформах, таких как Microsoft Azure.

«В новом ABBYY FineReader Engine мы использовали передовые технологии в области машинного обучения и обработки естественного языка, которые позволяют наиболее точно классифицировать документы по смыслу и распознавать полезные данные. Эти возможности будут особенно востребованы в системах предотвращения утечек данных, технологиях машинного зрения и платформах для управления контентом предприятий, в которых важную роль играет быстрое распознавание документов», – комментирует Дмитрий Шушкин, генеральный директор ABBYY Россия.

Инструментарий ABBYY FineReader Engine 12 содержит готовые примеры кода, которые помогут ускорить разработку приложений. С их помощью можно решить наиболее распространенные задачи по интеллектуальной обработке документов.

ABBYY FineReader Engine поддерживает 208 языков распознавания, в том числе в новой версии добавлены фарси и бирманский. Также технология позволяет распознавать документы, которые содержат сразу несколько языков. Это расширяет возможности компаний при выводе решений на международный рынок.

Кибершпионы в России переключились на НИОКР и инженерные предприятия

Доля кибератак на российские организации, совершаемых с целью шпионажа, заметно выросла. По данным портала киберразведки BI.ZONE Threat Intelligence, в 2025 году на шпионские операции пришлось уже 37% атак (против 21% годом ранее). Иными словами, если раньше шпионской была примерно каждая пятая атака, то теперь — уже почти каждая третья.

При этом госсектор остаётся для таких группировок целью номер один. На органы государственного управления приходится 27% атак шпионских кластеров.

Но интерес злоумышленников всё чаще смещается и в сторону науки и технологий. Доля атак на организации, связанные с НИОКР, за год выросла вдвое — с 7% до 14%.

Как отмечает руководитель BI.ZONE Threat Intelligence Олег Скулкин, рост доли шпионских атак почти в полтора раза стал одним из ключевых трендов 2025 года. По его словам, специалисты наблюдают более 100 кластеров, нацеленных на Россию и страны СНГ, и около 45% из них — это именно шпионские группировки.

Интересно, что такие кластеры сильно различаются по уровню подготовки. В одних случаях злоумышленники применяют технически сложные инструменты, но выдают себя плохо составленными фишинговыми письмами. В других — атаки относительно простые, зато адаптированы под локальный контекст и выглядят максимально правдоподобно.

Так, во второй половине декабря 2025 года группировка Rare Werewolf атаковала научно-исследовательское и производственное предприятие оборонно-промышленного комплекса. Жертве отправили письмо якобы с коммерческим предложением на поставку и монтаж сетевого оборудования — от имени сотрудника научно-производственного центра беспилотных систем.

Во вложении не было классических зловредов. Вместо этого использовались легитимные инструменты: AnyDesk для удалённого доступа, 4t Tray Minimizer для скрытия окон и утилита Blat — для незаметной отправки похищенных данных. Такой подход позволяет дольше оставаться незамеченными и обходить системы защиты.

Впрочем, легитимными программами дело не ограничивается. Почти все шпионские кластеры активно применяют зловред собственной разработки. Новые самописные инструменты помогают обходить средства защиты и закрепляться в инфраструктуре на длительное время.

Кроме того, такие группировки, как правило, не стеснены в ресурсах. Они могут позволить себе покупку дорогостоящих эксплойтов, включая 0-day. Ранее специалисты BI.ZONE фиксировали атаки кластера Paper Werewolf, который, предположительно, приобрёл на теневом форуме эксплойт к уязвимости в WinRAR за 80 тысяч долларов.

Судя по динамике, кибершпионаж становится всё более системным и профессиональным — и явно не собирается сдавать позиции.

RSS: Новости на портале Anti-Malware.ru