Предложен новый метод выявления вредоносных программ для Android

Предложен новый метод выявления вредоносных программ для Android

Предложен новый метод выявления вредоносных программ для Android

Он основан на непрерывном машинном обучении и способен на ходу приспосабливаться к новым угрозам. При тестировании метод показал более высокую точность, чем существующие аналоги.

В работе, опубликованной на archive.org, сингапурские учёные рассматривают особенности разработанной ими технологии и её отличия от предшественников — других методов выявления вредоносных программ при помощи машинного обучения.

Сначала такие методы, как правило, определяют особенности анализируемого приложения — например, выполняемые ими системные вызовы и обращения к программным интерфейсам или используемые ресурсы и привилегии. Затем эти данные передают готовому классификатору, который знаком с характерными чертами вредоносных программ. Он изучает их и выносит вердикт: есть опасность или нет, пишет xakep.ru.

Авторы работы полагают, что это заведомо порочный подход. Он подразумевает, что признаки вредоносных программ, которым обучили классификатор, не меняются. В действительности вредоносные программы постоянно эволюционируют. Из-за этого точность классификаторов падает.

Чтобы не оставать от противника, классификаторы необходимо постоянно переучивать. Однако для пакетного обучения нового классификатора нужно перемолоть чудовищный объём информации. Это делает частое переучивание непрактичным.

Предложенная сингапурскими исследователями технология, получившая название DroidOL, использует не пакетное, а непрерывное (online) машинное обучение, пассивно-агрессивный классификатор и анализ графа межпроцедурного потока управления.

На первой стадии DroidOL проводит статический анализ приложений для Android, строит графы межпроцедурного потока управления и помечает вершины, которые обращаются к потенциально опасным программным интерфейсам.

Затем технология использует ядро графа Вейсфейлера-Лемана, чтобы идентифицировать те части графов межпроцедурного потока управления, которые соответствуют потенциально опасному поведению.

Полученный набор данных применяется для обучения пассивно-агрессивного классификатора. Если при обучении он неверно классифицирует приложение, в него вносятся изменения. При отсутствии ошибок изменений не происходит.

После завершения первоначального обучения классификатор готов для практического использования. В дальнейшем классификатор будет искать вредоносные программы и в то же время замечать и адаптироваться к новым чертам вредоносных программ. Его не нужно переучивать, чтобы он не устарел.

Исследователи реализовали DroidOL на базе Soot, популярного средства статического анализа приложений для Android, и библиотеки Scikit-learn, упрощающей реализацию алгоритмов машинного обучения. Величина программы составила около 15,6 тысяч строк кода на Java и Python.

Эффективность DroidOL протестировали на базе, состоящей из 87 тысяч с лишним приложений для Android. Он показал верный результат в 84,29% случаев. Это более чем на 20% лучше, чем алгоритмы Drebin и Allix et. al. при типичных настройках пакетного обучения, и на 3% лучше, чем при постоянном переучивании.

OOXML — фикция: LibreOffice обвинила Microsoft в манипуляциях

Проблемы совместимости остаются одной из главных причин, по которым пользователи не спешат переходить с Microsoft Office на LibreOffice. Формально всё работает, но на практике время от времени всплывают странности с вёрсткой, форматированием и отображением данных. И, как считают в The Document Foundation (TDF), дело тут вовсе не в LibreOffice.

Фонд, стоящий за LibreOffice, снова выступил с жёсткой критикой Microsoft. В блоге Итало Виньоли — одного из основателей TDF — корпорация из Редмонда обвиняется в том, что она игнорирует интересы отрасли ради собственных коммерческих целей.

По его словам, утверждение «OOXML — это стандарт, и его просто нужно принять» выглядит, мягко говоря, странно.

Виньоли настаивает: Office Open XML (OOXML) не может считаться полноценным стандартом, пока Microsoft не готова радикально переработать сами приложения Office. В качестве примера он напомнил о давней проблеме Excel с автопреобразованием данных — истории, которая напрямую затронула научное сообщество.

Excel годами автоматически превращал текстовые значения в даты. Для обычных таблиц это удобно, но для генетиков — катастрофа. Названия генов вроде MARCH1, SEPT1 или DEC1 Excel воспринимал как даты и превращал их в «1-Mar», «1-Sep» и «1-Dec».

В 2016 году журнал Genome Biology проанализировал почти 3,6 тысячи научных работ с Excel-файлами и выяснил, что примерно в каждой пятой были ошибки, вызванные именно автозаменой форматов.

Долгое время Microsoft считала проблему нишевой и не давала возможность отключить такое поведение. Лишь в 2023 году компания добавила соответствующую настройку; уже после того, как Комитет по номенклатуре генов человека (HGNC) был вынужден переименовать около 27 генов, чтобы избежать ошибок. К тому моменту ущерб для исследований уже был нанесён.

По словам Виньоли, OOXML «открыт» лишь формально. Спецификация формата занимает около 7 000 страниц, что делает полноценную и корректную реализацию сторонними разработчиками почти невозможной.

Кроме того, Microsoft Office сам не использует строгую версию стандарта (Strict OOXML), предпочитая так называемый Transitional-вариант. В нём до сих пор есть зависимости от старых, проприетарных форматов и поведения древних версий Word — вплоть до элементов с названиями вроде autoSpaceLikeWord95 или shapeLayoutLikeWW8.

Отдельно Виньоли критикует рекомендации использовать Windows Metafile для графики вместо открытых и кросс-платформенных форматов вроде SVG.

Для пользователей всё это выливается в знакомую проблему: документы между Office и LibreOffice открываются, но не всегда так, как ожидалось. Для TDF же это очередное подтверждение того, что формат Office по-прежнему работает как инструмент удержания пользователей внутри экосистемы Microsoft.

Спор вокруг OOXML длится уже много лет, и новый выпад со стороны LibreOffice ясно показывает: вопрос совместимости и «открытых стандартов» по-прежнему далёк от закрытия.

RSS: Новости на портале Anti-Malware.ru