Тестирование на масштабируемость в облачной среде

Тестирование на масштабируемость в облачной среде

Не так давно в Trend Micro задались целью выполнить тест масштабируемости одного из собственных продуктов (Trend Micro Deep Security). Скорый поверхностный расчет показал, что для выполнения этой задачи потребовалось бы 35 серверов Dell 710 с возможностью виртуализации. Найти столько доступных серверов – непростая задача для любой компании, а о том, чтобы купить столько серверов ради месячного тестирования, не могло быть и речи.



Поэтому было решено обратиться за помощью к облакам. Подходящим решением стала инфраструктура Amazon Web Services (AWS), с помощью которой удалось получить необходимое количество менее крупных ресурсов. (В данном случае небольшие экземпляры идеально подходили для моделирования крупной архитектуры «менеджер-агент», причем каждый экземпляр моделировал множество агентов).

Следует иметь в виду, что просто открыть учетную запись и сделать запрос на 1000 небольших экземпляров не удастся. Сотрудники Amazon связываются с клиентом по электронной почте, чтобы определить требуемое соотношение типов экземпляров, платформ, зон доступности и регионов, которые будут выгодны как вашему проекту, так и AWS. Сразу после определения конфигурации мы разработали необходимые инструменты быстрого увеличения или уменьшения масштаба нашей тестовой среды. К ним относились AMI (шаблоны) и инструменты, использовавшие интерфейсы прикладного программирования для обнаружения и мониторинга ресурсов.

Нас не миновали странности платформы AWS, такие как перекос временной диаграммы при активном использовании ресурсов ЦП, некорректная информация о ресурсах ЦП для небольших экземпляров в CloudWatch и неизбежные «войны цен» за точечные экземпляры. Из-за особого характера тестов не все шло по плану. Порой при увеличении масштаба возникали сообщения об ошибке от интерфейса прикладного программирования AWS с формулировкой «недостаточно ресурсов». Будет нелишним иметь запасные варианты на случай, когда нужный тип экземпляра или регион перегружены.

В процессе решения различных задач платформа AWS показала хорошие возможности поиска и быстрого решения проблем с масштабируемостью. Имея возможность быстро получить сотни виртуальных машин с одного AMI, мы могли увеличивать и уменьшать масштаб в зависимости от условий тестирования.

В итоге были достигнуты поставленные цели по масштабируемости и потрачено гораздо меньше средств.

ФСТЭК России определилась со списком угроз для ИИ-систем

В банке данных угроз (БДУ), созданном ФСТЭК России, появился раздел о проблемах, специфичных для ИИ. Риски в отношении ИБ, связанные с качеством софта, ML-моделей и наборов обучающих данных, здесь не рассматриваются.

Угрозы нарушения конфиденциальности, целостности или доступности информации, обрабатываемой с помощью ИИ, разделены на две группы — реализуемые на этапе разработки / обучения и в ходе эксплуатации таких систем.

В инфраструктуре разработчика ИИ-систем оценки на предмет безопасности информации требуют следующие объекты:

 

Объекты, подлежащие проверке на безопасность в инфраструктуре оператора ИИ-системы:

 

Дополнительно и разработчикам, и операторам следует учитывать возможность утечки конфиденциальной информации, а также кражи, отказа либо нарушения функционирования ML-моделей.

Среди векторов возможных атак упомянуты эксплойт уязвимостей в шаблонах для ИИ, модификация промптов и конфигурации агентов, исчерпание лимита на обращения к ИИ-системе с целью вызвать отказ в обслуживании (DoS).

В комментарии для «Ведомостей» первый замдиректора ФСТЭК Виталий Лютиков пояснил, что составленный ими перечень угроз для ИИ ляжет в основу разрабатываемого стандарта по безопасной разработке ИИ-систем, который планировалась вынести на обсуждение до конца этого года.

Представленная в новом разделе БДУ детализация также поможет полагающимся на ИИ госструктурам и субъектам КИИ данных скорректировать процессы моделирования угроз к моменту вступления в силу приказа ФТЭК об усилении защиты данных в ГИС (№117, заработает с марта 2026 года).

Ужесточение требований регулятора в отношении безопасности вызвано ростом числа атак, в том числе на ИИ. В этих условиях важно учитывать не только возможности ИИ-технологий, но и сопряженные с ними риски.

RSS: Новости на портале Anti-Malware.ru