Протекторы скрывают около 40% уязвимостей в Android-приложениях

Протекторы скрывают около 40% уязвимостей в Android-приложениях

Протекторы скрывают около 40% уязвимостей в Android-приложениях

Специалисты Positive Technologies провели исследование и выяснили, насколько протекторы помогают скрывать уязвимости и защитные механизмы в Android-приложениях. Для анализа использовали собственный сервис защиты от реверс-инжиниринга, который позволил оценить, как меняется доступность кода для анализа злоумышленниками.

Android остаётся самой распространённой мобильной платформой в мире — ей пользуются около 75% рынка, по данным Statcounter.

Открытость системы и свободный доступ к APK-файлам упрощают реверс-инжиниринг: раскрытие логики работы приложений, поиск ошибок, копирование функциональности и извлечение чувствительных данных.

В исследуемых приложениях специалисты обнаружили более 50 потенциальных уязвимостей разного уровня риска. После применения протектора количество обнаруживаемых ошибок снизилось примерно на 40%.

Наиболее заметное уменьшение пришлось на уязвимости высокого уровня риска — минус 67%. Уязвимостей со средним уровнем риска стало меньше на четверть, а дефектов, которые могли косвенно повлиять на безопасность, — почти на 80%.

Результат оказался разным для разных категорий приложений. Лидером по снижению числа видимых уязвимостей стали сервисы доставки еды — минус 46%. Далее идут приложения для путешествий и транспорта, а также маркетплейсы — по 38%. Примерно треть уязвимостей удалось скрыть в приложениях из сфер развлечений, телекоммуникаций, финансов и платежей.

Интересный эффект наблюдался и в области скрытия защитных техник. После применения протектора количество «видимых» мер безопасности, которые можно обнаружить с помощью сканера, сократилось на 67%. Это означает, что защитные механизмы стало сложнее распознать, а значит — сложнее заранее подготовить способы их обхода.

Также уменьшилось количество обнаруживаемых ключей доступа, токенов и других чувствительных данных — в среднем на 71%. Максимальный эффект наблюдался у приложений категории «Инструменты и утилиты».

По результатам анализа, использование техник защиты от запуска в виртуальных машинах оказалось скрыто в 98% случаев. Механизмы защиты от отладки — в 91%.

Для обфускации и защит от дизассемблирования снижение заметности было менее выраженным, на 32% и 21% соответственно.

Исследование показывает, что даже когда разработчики внедряют защитные механизмы, они могут быть распознаны при статическом анализе. Протекторы позволяют скрыть детали реализации и усложнить злоумышленникам задачу по изучению внутренней логики приложений.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Swordfish Security подготовила бесплатный фреймворк по оценке рисков ИИ

Специалисты по кибербезопасности из компании Swordfish Security объявили, что разработанная ими методология по оценке зрелости компаний, применяющих искусственный интеллект, будет доступна ИБ-командам бесплатно. Идея в том, чтобы помочь сформировать зарождающийся рынок ИИ-безопасности и дать организациям понятный инструмент для самопроверки.

Методология и карта угроз создавались именно для российского рынка: учитывались требования регуляторов и особенности отечественных ИИ-систем.

Во фреймворк под названием SAIMM включили направления анализа ИИ-систем, оценку рисков, а также набор мер по их снижению. Фактически это рабочий чек-лист, который может помочь компаниям понять текущий уровень зрелости и построить собственную дорожную карту развития безопасного ИИ.

По словам специалистов, на рынке ежедневно появляются новые ИИ-агенты, а бизнес активно внедряет инструменты на базе языковых моделей. При этом масштаб угроз растёт, а атаковать ИИ-системы зачастую проще, чем традиционное ПО из-за их специфики.

Разработчики собрали около 80 уязвимостей, характерных именно для ИИ-систем, и сопоставили их с международными классификациями — OWASP, NIST, ENISA, MITRE ATLAS и другими. В список вошли, например, компрометация модели, обход ограничений, утечка чувствительных данных в ответах модели, конфликт инструкций и другие риски. Для каждой угрозы указаны меры защиты и необходимые контроли.

Фреймворк не привязан к определённой отрасли: им могут пользоваться финтех-компании, онлайн-ритейл, госсектор и другие организации, работающие с ИИ. Разработчики также участвовали в проектах на уровне регуляторов, что позволило учесть положения национальных инициатив в сфере ИИ и критической инфраструктуры.

Совместное исследование Ассоциации Финтех и экспертов в области ИИ-безопасности показало, что четверть крупнейших финансовых компаний уже пережили инциденты, связанные с использованием искусственного интеллекта. Это указывает на то, что ИИ активно интегрируется в рабочие процессы, но инструменты его защиты всё ещё находятся в стадии становления.

Новая методология должна помочь компаниям уйти от спонтанного подхода к внедрению ИИ и выстроить системную работу с рисками.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru