Российский ИИ выявляет нарушения техники безопасности с точностью 80%

Российский ИИ выявляет нарушения техники безопасности с точностью 80%

Российский ИИ выявляет нарушения техники безопасности с точностью 80%

В университете ИТМО создали ИИ-модель, позволяющую автоматизировать отслеживание по видео действий на промпредприятии, способных привести к ЧП. Умный помощник работает со средней точностью 80% — намного выше, чем зарубежные аналоги.

Среди других преимуществ opensource-продукта, нареченного ActionFormer, разработчики отметили легковесность (работа по 3,7 млн параметров — против десятков млн в случае VideoMAE или Hiera) и возможность распознавать сразу десять опасных или неправомерных действий.

В ходе анализа видео ИИ-ассистент расставляет скелетные точки на изображениях людей, определяет их действия и местонахождение. Обучение проводилось на датасетах из открытых источников и роликах, отснятых самими разработчиками.

 

Обкатка новинки на крупном предприятии в Пермском крае, по словам разработчиков, позволила предотвратить ряд серьезных ошибок и сократить число традиционных проверок по технике безопасности в три раза.

В октябре ожидается выпуск версии ActionFormer для многоквартирных домов. Ее внедрение позволит повысить эффективность выявления правонарушений на закрепленной за ними территории.

«В будущем мы хотим обучить модель на большем числе действий, — заявила для прессы руководитель проекта Валерия Ефимова. — Следующая задача — адаптировать систему распознавания действий для носимых камер. Например, ее можно будет использовать в шахтах при проведении инструктажа».

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

В PT Sandbox внедрили ML-модель для поиска скрытых киберугроз

В PT Sandbox появилась новая модель машинного обучения, которая помогает выявлять неизвестные и скрытые вредоносные программы. Песочница анализирует поведение программ по сетевой активности и может заметить угрозы, которые не удаётся поймать обычными методами.

Разработчики отмечают, что один из самых надёжных способов обнаружить зловред — это изучение подозрительных следов в сетевом трафике.

Новая ML-модель как раз обучена отличать «чистые» данные от вредоносных, разбирая пакеты и фиксируя нетипичные признаки поведения.

За последние полгода в песочницу добавили сотни новых правил и сигнатур для анализа трафика, что позволило расширить набор инструментов для поиска программ-вымогателей и атак нулевого дня.

Ещё одно заметное нововведение — проверка QR-кодов. Согласно исследованию, почти половина писем с QR-ссылками содержит зловред или спам. Теперь система может извлекать такие ссылки из писем и вложений и анализировать их на предмет угроз.

Появилась и дополнительная гибкость для специалистов по безопасности: можно писать собственные YARA-правила, настраивать очередь проверки и задавать приоритеты анализа в зависимости от источника или типа файла.

Кроме того, PT Sandbox научилась работать с S3-совместимыми облачными и локальными хранилищами — это позволяет проверять безопасность загружаемых данных вроде кода, изображений или архивов.

И наконец, через веб-интерфейс теперь можно вручную запускать поведенческий анализ отдельных файлов. Это даёт возможность глубже исследовать подозрительные объекты и быстрее реагировать на потенциальные атаки.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru