В открытый доступ выложили модель T-one для распознавания речи на русском

В открытый доступ выложили модель T-one для распознавания речи на русском

В открытый доступ выложили модель T-one для распознавания речи на русском

Центр искусственного интеллекта группы «Т-Технологии» опубликовал на GitHub и Hugging Face свою модель потокового распознавания речи на русском языке под названием T-one. Это компактная ASR-модель (около 70 млн параметров), которая ориентирована на работу с аудио в реальном времени.

Особенно хорошо она показывает себя на сложных данных — например, шумных или сжатых записях из колл-центров. Именно в таких ситуациях ошибки распознавания особенно критичны для бизнеса.

Модель подходит для сценариев, где важно обрабатывать речь «на лету» — звонки, голосовые ассистенты, системы автоматизации поддержки. У неё низкая задержка и возможность работать с аудиопотоками произвольной длины.

T-one уже используется во внутренних сервисах группы «Т-Технологии» — например, в колл-центрах Т-Банка, мобильном секретаре Т-Мобайла, в системах защиты от спам-звонков и других проектах.

 

Открытых и качественно размеченных датасетов для распознавания речи в русскоязычной телефонии пока нет, но, по внутренним оценкам компании, T-one обходит по качеству более крупные открытые модели, такие как GigaAM v2 (242 млн параметров) и Whisper Large-v3 (1,5 млрд параметров).

Модель можно запускать на обычных серверах — она не требует мощного и дорогого оборудования. Это может быть полезно тем, кто хочет внедрить автоматическое распознавание речи, но не готов платить за облачные решения или дорогие лицензии.

В открытом доступе опубликованы не только веса модели, но и код, который можно использовать для адаптации под собственные задачи или работы в высоконагруженных системах. Лицензия — Apache 2.0, то есть разрешено и коммерческое использование, и любые модификации.

В Intel TDX обнаружены уязвимости с риском утечки данных

Intel вместе с Google провела масштабный аудит технологии Trust Domain Extensions (TDX), процессе которого обнаружилось немало проблем. За пять месяцев работы специалисты выявили пять уязвимостей, а также 35 багов и потенциальных слабых мест в коде.

TDX — это аппаратная технология «конфиденциальных вычислений». Она предназначена для защиты виртуальных машин в облаке даже в том случае, если гипервизор скомпрометирован или кто-то из администраторов действует недобросовестно.

По сути, TDX создаёт изолированные «доверенные домены» (Trust Domains), которые должны гарантировать конфиденциальность и целостность данных.

Проверкой занимались исследователи Google Cloud Security и команда Intel INT31. Они анализировали код TDX Module 1.5 — ключевого компонента, отвечающего за работу механизма на высоком уровне. В ход пошли ручной аудит, собственные инструменты и даже ИИ.

В результате обнаружены пять уязвимостей (CVE-2025-32007, CVE-2025-27940, CVE-2025-30513, CVE-2025-27572 и CVE-2025-32467). Их можно было использовать для повышения привилегий и раскрытия информации. Intel уже выпустила патчи и опубликовала официальное уведомление.

Самой серьёзной Google называет CVE-2025-30513. Она позволяла злоумышленнику фактически обойти механизмы безопасности TDX. Речь идёт о сценарии, при котором во время миграции виртуальной машины можно было изменить её атрибуты и перевести её в режим отладки.

Это открывало доступ к расшифрованному состоянию виртуальной машины, включая конфиденциальные данные. Причём атаку можно было провести уже после процедуры аттестации, когда в системе гарантированно присутствуют важные материалы.

Google опубликовала подробный технический отчёт (PDF) объёмом 85 страниц, а Intel — более краткое описание результатов совместной работы.

RSS: Новости на портале Anti-Malware.ru