При внедрении ИИ вопрос доверия и безопасности стал ключевым

При внедрении ИИ вопрос доверия и безопасности стал ключевым

При внедрении ИИ вопрос доверия и безопасности стал ключевым

Вопросы доверия и безопасности сервисов искусственного интеллекта являются наиболее сложными при внедрении инструментов с ИИ в промышленную эксплуатацию. К такому выводу пришли участники пленарной дискуссии на Открытой конференции Института системного программирования РАН им. В. П. Иванникова.

Первым данную проблему обозначил заместитель министра цифрового развития, связи и массовых коммуникаций Александр Шойтов.

По его словам, она начала возникать по мере того, как внедрение ИИ начало переходить от ограниченных пилотов к масштабным внедрениям, особенно в таких сферах, как государственные информационные системы и все, что связано с работой на объектах, отнесенных к сфере критической информационной инфраструктуры.

Решение данной проблемы, как подчеркнул Александр Шойтов, требует совместных усилий разработчиков, научного сообщества и органов власти. При этом он напомнил о задаче, поставленной высшим руководством страны, добиться того, чтобы регулирование не являлось тормозом для развития технологий, что влечет риск технологического отставания от передовых стран.

Другим риском, по мнению Александра Шойтова, является усложнение внедрения данных технологий из-за завышенных, труднореализуемых и дорогостоящих мер по защите. Другой проблемой является интерпретация результатов, которые выдает ИИ.

Как отметил заместитель министра цифрового развития, основные риски уже определены, как и методы их компенсации. Это прежде всего использование доверенных и безопасных фреймворков, а также обезличивание данных (персональных в первую очередь).

Генеральный директор Национального технологического центра цифровой криптографии Игорь Качалин назвал основной задачей преодоление ситуации, когда инструментарий, использующий ИИ, является «черным ящиком», принцип работы которого непонятен.

Актуальной задачей остается регулирование так называемых дипфейков, и реальные шаги по ее решению Александр Шойтов анонсировал на ближайшее время. Вице-президент ПАО «Транснефть» Андрей Бадалов назвал эту технологию уже широко применяемой злоумышленниками в ходе целевых атак на персонал, особенно в ходе целевого фишинга или при реализации схемы «фейк-босс». Данные техники применяются для получения необходимых злоумышленникам данных в компании.

Андрей Бадалов назвал одной из важнейших задач обеспечение качества данных. Это касается как тех наборов данных, на которых обучают нейросети, так и тех, с которыми ИИ работает. Однако Андрей Бадалов выразил уверенность, что данную проблему удастся решить. Игорь Качалин на 2025 год анонсировал появление сервисов, направленных на защиту передаваемых данных от искажений и подмены.

Заместитель министра энергетики Эдуард Шереметцев назвал сложной проблемой также хранение и передачу данных, которых отрасль накапливает 3 эксабайта за один день. Кроме того, он обозначил проблему разделения ответственности между теми, кто ИИ разрабатывает и кто эксплуатирует: нельзя привлекать к ответственности оператора, который принял решение на основании полученных от аналитической системы данных, за которыми стоит ошибка в алгоритме или уязвимость. Александр Шойтов анонсировал начало большой работы в данном направлении уже в начале 2025 года.

Начальник 2 управления ФСТЭК России Дмитрий Шевцов напомнил, что ИИ и машинное обучение давно используются в средствах защиты информации. Без них невозможно выявление вредоносной активности. Он выразил уверенность, что многие проблемы можно решить через внедрение технологий безопасной разработки.

Тут большую роль может сыграть Консорциум безопасной разработки ИИ, созданный в мае 2024 года. Число его участников уже достигло 12, а уже в январе, как анонсировал Александр Шойтов, к нему присоединится еще 16 компаний и организаций.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru