Новое решение Angara Security на базе ML повысит эффективность SOC

Новое решение Angara Security на базе ML повысит эффективность SOC

Новое решение Angara Security на базе ML повысит эффективность SOC

Специалисты компании Angara Security выпустили решение на базе нейронной сети, интегрирующееся с SIEM-системой. По словам разработчиков, новинка поможет повысить эффективность мониторинга в SOC.

Комбинированные слои, из которых состоит нейронная сеть, свойственны как сверточным сетям (Convolutional Neural Networks), так и рекуррентным (Recurrent Neural Networks).

Таким образом, разработка поможет дополнить стандартные методы анализа событий в информационной безопасности, а также с высокой точностью выявлять вредоносную активность по характерным паттернам.

В этом случае безопасники избавляются от необходимости писать отдельные правила детектирования для каждой новой утилиты или процедуры.

«ML-модели являются отличным вспомогательным инструментом в работе аналитиков. С одной стороны, они позволяют расширить возможности по детектированию активности злоумышленников, с другой — автоматизировать часть процессов и высвободить ресурсы для задач, требующих участия человека», — комментирует Артем Грибков, заместитель директора Angara SOC по развитию бизнеса.

Использованная Angara Security ML-модель может применяться в трёх сценариях. Например, для детектирования PowerShell-скриптов — одного из любимых инструментов киберпреступников.

Второй сценарий — обнаружение DGA-доменов и DNS-туннелирования. Зачастую классические методы анализа DNS-имен выдают ложноположительные срабатывания, а сверху ещё накладывается проблема доменных имён, похожих на легитимные. В Angara Security отмечают, что ML-решение справляется с этой задачей.

Наконец, третий сценарий — анализ журналов веб-серверов. ML-модель в этом случае может использоваться в качестве дополнения к WAF-системам или как альтернатива эшелонированной защиты веб-ресурсов.

Фильтры AdBlock выдают страну даже при включённом VPN

Исследователи описали новую технику деанонимизации под названием Adbleed, которая ставит под сомнение привычное ощущение безопасности у пользователей VPN. Проблема кроется в блокировщиках рекламы. Такие расширения, как uBlock Origin, Brave или AdBlock Plus, работают на основе списков фильтров.

Есть базовый список EasyList с десятками тысяч правил для международной рекламы, а есть региональные — для Германии, Франции, России, Бразилии, Японии и других стран.

Они блокируют локальные рекламные домены, и многие пользователи включают их вручную или по рекомендации самого расширения, ориентируясь на язык браузера.

 

Adbleed использует довольно изящную идею: он измеряет время, за которое браузер обрабатывает запрос к определённому домену. Если домен заблокирован фильтром, запрос обрывается почти мгновенно — за считаные миллисекунды.

 

Если не заблокирован, браузер пытается установить сетевое соединение, и даже при ошибке это занимает в разы больше времени. Небольшой JavaScript-скрипт может проверить несколько десятков доменов, характерных для конкретного регионального списка, и по скорости отклика понять, активирован он или нет. Всё это происходит на стороне клиента без cookies, без всплывающих разрешений и без каких-то сложных эксплойтов.

В итоге атакующий может выяснить, какие национальные фильтры включены в вашем браузере. А это почти всегда коррелирует со страной проживания или хотя бы с родным языком пользователя.

Если добавить к этому часовой пояс, параметры экрана и другие элементы цифрового отпечатка, анонимность заметно сужается, даже если вы сидите через VPN или прокси.

Самое неприятное в этой истории то, что VPN тут ни при чём: он меняет сетевую «точку выхода», но не конфигурацию браузера. Ваши фильтры остаются прежними, где бы ни находился сервер.

Пользователю остаётся не самый приятный выбор: отключать региональные списки и мириться с дополнительной рекламой, пытаться «зашумить» профиль случайными фильтрами или принимать риск как есть.

RSS: Новости на портале Anti-Malware.ru