Продукты Security Vision вошли в реестр российского ПО как использующие ИИ

Продукты Security Vision вошли в реестр российского ПО как использующие ИИ

Продукты Security Vision вошли в реестр российского ПО как использующие ИИ

Целый ряд продуктов на платформе Security Vision успешно прошел экспертную проверку и отмечен в реестре российского ПО как использующий технологии искусственного интеллекта (ИИ).

Искусственный интеллект применяется в следующих средствах защиты информации на платформе Security Vision:

1. Средства управления киберинцидентами

IRP | SOAR | NG SOAR;

2. Средства анализа киберугроз

TIP | UEBA | AD+ML;

3. Средства управления процессами кибербезопасности

GRC | SGRC | Auto-SGRC | Auto-Compliance.

Перечисленные средства защиты позволяют решать следующие задачи:

1) Средства управления киберинцидентами (международная классификация: SOAR | NG SOAR - Security Orchestration, Automation and Response, IRP - Incident Response Platform, SIEM - Security information and event management, AM – Asset Management, CMDB, VM – Vulnerability Management и VS – Vulnerability Scanner) предназначены для централизованной координации и управления (оркестровки) средствами защиты информации, автоматизации всех этапов реагирования на инциденты ИБ (выявление, анализ, локализация, устранение инцидента, восстановление после инцидента, выполнение пост-инцидентных действий), роботизации действий специалистов по реагированию, управления событиями / инцидентами ИБ, активами и уязвимостями, автоматизации обмена информацией с регуляторами (НКЦКИ, ФинЦЕРТ).

2) Средства анализа киберугроз (международная классификация: TIP - Threat Intelligence Platform, UEBA - User and Entity Behavior Analytics, AD+ML – Anomaly Detection with Machine Learning) предназначены для сбора и обработки аналитических данных о киберугрозах (киберразведка), обнаружения киберугроз с применением технологий поведенческого анализа, выявления аномалий и машинного обучения.

3) Средства управления процессами кибербезопасности (международная классификация: SGRC - Security Governance, Risk Management and Compliance; GRC - Governance, Risk Management and Compliance) предназначены для автоматизации управления кибербезопасностью (CM – Compliance Management, BCP – Business Continuity Plan, Audit), рисками (кибербезопасности RM – Risk Management, операционными ORM – Operational Risk Management, согласно 716-П ЦБ РФ), соответствием законодательству (требованиям НПА, включая 187-ФЗ, приказы ФСТЭК и др.) и стандартам (требованиям НМД, включая различные ISO, NIST, ГОСТ и др.).

В качестве используемых технологий ИИ и ML (Machine learning) активно применяются нейросети (включая рекуррентные архитектуры), алгоритмы решающих деревьев, методы градиентного спуска, методы опорных векторов и другие.

Методы ИИ и машинного обучения используются в Security Vision как независимо, так и совместно с линейными алгоритмами: правилами корреляции, сигнатурным анализом, деревьями решений и др. для получения максимально полной картины относительно объектов наблюдения или для выявления сработок/рекомендаций, где нет возможности применить набор заранее подготовленных правил/условий или они не дают максимально полный и адаптивный к изменениям результат.

Дополнительно к моделям искусственного интеллекта, компания разрабатывает и применяет в продуктах Security Vision алгоритмы централизованного управления моделями ИИ и ML, в том числе автоматическое переобучение моделей на данных Заказчика, а также автоматический подбор параметров моделей для более качественной адаптации и применения моделей к каждой уникальной инфраструктуре и изменениям внутри информационных потоков, изменениям легитимной и не легитимной активности. Что позволяет продуктам Security Vision автоматически адаптироваться под ландшафт данных Заказчика, выдавая более точные модели и более высокие результаты.

«Согласно классическому треугольнику связей, продукты Security Vision развиваются в направлении технологий реагирования (Security orchestration tools), процессов автоматизации (Governance, risk management and compliance) и аналитики больших данных (Security data analysis). Внедрение и совершенствование механизмов искусственного интеллекта – важнейшая составляющая этого развития, позволяющая обеспечить качественно более высокую эффективность в решении задач кибербезопасности по всем трем направлениям, что особенно актуально в свете растущего числа киберугроз и нехватки квалифицированных кадров у российских компаний. Теперь системы Security Vision первыми в своих классах на государственном уровне признаны использующими ИИ и ML. Это является для нас сильным стимулом, чтобы вести еще более активную работу по их развитию и, как следствие, по обеспечению информационной безопасности отечественных организаций», – прокомментировала директор по продуктам Security Vision Анна Олейникова.

В МФТИ подобрали работающие альтернативы GPU NVIDIA

Институт искусственного интеллекта МФТИ оценил возможности альтернативных графических процессоров (GPU) от китайских производителей. Параллельно в Физтехе был создан Центр компетенций, основной задачей которого стала помощь бизнесу в построении инфраструктуры для работы с искусственным интеллектом.

Российские компании столкнулись с увеличением сроков поставок, ограничениями на загрузку драйверов и отсутствием официальной поддержки оборудования NVIDIA, графические ускорители которой традиционно используются при построении ИИ-инфраструктуры.

В этих условиях бизнесу приходится пересматривать привычные подходы и искать альтернативные технологические решения.

Институт искусственного интеллекта МФТИ провёл комплексное исследование рынка альтернативных ускорителей, преимущественно китайского производства. В рамках работы специалисты изучали архитектурные особенности оборудования, состояние драйверов, совместимость с популярными фреймворками и поведение ускорителей под нагрузкой при выполнении различных задач — от работы с большими языковыми моделями и системами компьютерного зрения до распределённых вычислений.

По итогам испытаний наилучшие результаты показали видеокарты s4000 от Moore Threads и C500 от MetaX. Они продемонстрировали высокую производительность и стабильную работу во всех ключевых сценариях, включая длительную непрерывную нагрузку. В ряде тестов их производительность оказалась сопоставимой с NVIDIA A100, а в отдельных случаях — даже превосходила её.

«Мы оценивали скорость и воспроизводимость вычислений, устойчивость при росте нагрузки и стабильность поведения моделей на разных типах ускорителей. Эти параметры определяют пригодность систем для длительной эксплуатации. По итогам исследований мы сформировали программно-аппаратные конфигурации, обеспечивающие необходимую производительность языковых моделей на альтернативных платформах. Такой подход формирует предсказуемый жизненный цикл ИИ-решений и позволяет компаниям системно планировать эксплуатацию систем в собственных контурах», — рассказал научный директор Института искусственного интеллекта МФТИ Юрий Визильтер.

В МФТИ пообещали продолжить тестирование новых поколений ускорителей, а также подготовку практических рекомендаций по их использованию для решения типовых задач.

RSS: Новости на портале Anti-Malware.ru