В МГУ разработали систему проверки защищённости ИИ-продуктов

В МГУ разработали систему проверки защищённости ИИ-продуктов

В МГУ разработали систему проверки защищённости ИИ-продуктов

Сотрудники Центра компетенций Национальной технологической инициативы (ЦК НТИ) по большим данным, действующего на базе МГУ, разработали решение для проверки устойчивости ИИ-систем к кибератакам.

Как выяснил RT, платформа предоставляет возможность загрузки моделей машинного обучения в облако, где они в автоматическом режиме проходят тестирование. На выходе пользователь получает не только оценку, но также дообученный вариант, способный исправно работать в условиях различных внешних воздействий и изменений.

Созданное в МГУ решение пригодно для проверки любых систем, построенных на основе нейросетевых языковых моделей. Авторы считают, что их разработка окажется особенно полезной в применении к автопилотам грузовых автомобилей и поездов, системам идентификации по фото, видео, голосу, а также системам распознавания текста в аудиосообщениях: такие ИИ-помощники наиболее часто подвергаются кибератакам.

Команда ЦК НТИ создала прототип сервиса проверки и уже работает с рядом крупных российских клиентов над повышением устойчивости их ИИ-продуктов.

«В последние годы с активным внедрением систем ИИ в повседневную жизнь — например, голосовых банковских помощников, автопилотов, сервисов медицинской диагностики, систем идентификации на транспорте — стало понятно, что тематика устойчивости к атакам скоро станет очень востребована», — отметил Денис Гамаюнов, доцент факультета ВМК МГУ.

По мнению эксперта, в ближайшие годы рынок средств защиты систем ИИ возрастет в несколько раз.

«Безусловно, защита серверов, на которых запущен код ИИ, важна, но злоумышленникам интереснее скорее нарушить, а не прекратить его работу, чтобы тот выдавал некорректные решения, — комментирует Сергей Полунин, руководитель группы защиты инфраструктурных ИТ-решений компании «Газинформсервис». — Например, если хакеры доберутся до обучающей выборки и сумеют добавить в нее свои объекты, то обученная на такой выборке модель будет ошибаться и выдавать неправильные результаты».

В Intel TDX обнаружены уязвимости с риском утечки данных

Intel вместе с Google провела масштабный аудит технологии Trust Domain Extensions (TDX), процессе которого обнаружилось немало проблем. За пять месяцев работы специалисты выявили пять уязвимостей, а также 35 багов и потенциальных слабых мест в коде.

TDX — это аппаратная технология «конфиденциальных вычислений». Она предназначена для защиты виртуальных машин в облаке даже в том случае, если гипервизор скомпрометирован или кто-то из администраторов действует недобросовестно.

По сути, TDX создаёт изолированные «доверенные домены» (Trust Domains), которые должны гарантировать конфиденциальность и целостность данных.

Проверкой занимались исследователи Google Cloud Security и команда Intel INT31. Они анализировали код TDX Module 1.5 — ключевого компонента, отвечающего за работу механизма на высоком уровне. В ход пошли ручной аудит, собственные инструменты и даже ИИ.

В результате обнаружены пять уязвимостей (CVE-2025-32007, CVE-2025-27940, CVE-2025-30513, CVE-2025-27572 и CVE-2025-32467). Их можно было использовать для повышения привилегий и раскрытия информации. Intel уже выпустила патчи и опубликовала официальное уведомление.

Самой серьёзной Google называет CVE-2025-30513. Она позволяла злоумышленнику фактически обойти механизмы безопасности TDX. Речь идёт о сценарии, при котором во время миграции виртуальной машины можно было изменить её атрибуты и перевести её в режим отладки.

Это открывало доступ к расшифрованному состоянию виртуальной машины, включая конфиденциальные данные. Причём атаку можно было провести уже после процедуры аттестации, когда в системе гарантированно присутствуют важные материалы.

Google опубликовала подробный технический отчёт (PDF) объёмом 85 страниц, а Intel — более краткое описание результатов совместной работы.

RSS: Новости на портале Anti-Malware.ru