Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Отчеты о доставке СМС-сообщений помогают вычислить геолокацию получателя

Команда исследователей продемонстрировала новую атаку по сторонним каналам и дала ей интересное имя — «Freaky Leaky SMS». Особенность этого вектора — отслеживание тайминга отчетов о доставке СМС-сообщений для определения местоположения получателя.

Как известно, за обработку отчетов о доставке СМС-сообщений отвечает Центр обслуживания коротких сообщений (SMSC). Его задача — уведомить отправителя о статусе сообщения: доставлено, отклонено, принято, истек срок, не удалось доставить и т. п.

Несмотря на наличие маршрутизации, задержек в обработке и множества сетевых узлов, у мобильных сетей присутствует определенные физические характеристики, позволяющие просчитать тайминг.

Исследователи разработали МО-алгоритм, анализирующий временные интервалы между СМС-ответами. Такие интервалы могут выдать геолокацию получателя с точностью до 96% для местоположений в разных странах, а также с 86% — для двух локаций в пределах одной страны.

Чтобы воспользоваться этим вектором, условному злоумышленнику придется сначала собрать ряд данных и четко связать между собой отчеты о доставке СМС-сообщений и известное местоположение своей цели.

 

Во-первых, атакующий должен отправить несколько СМС-сообщений жертве. Их можно замаскировать под рекламные материалы, которые получатель с большой долей вероятности проигнорирует, либо использовать так называемые «бесшумные» сообщения. Последний вариант — это послания «type 0», в которых отсутствует контент, такие СМС-сообщения не выводят уведомления на устройстве получателя.

В ходе исследования специалисты использовали ADB для отправки 20 бесшумных сообщений. Они доставлялись каждый час на протяжении трех дней. Принимающие тестовые устройства были расположены в США, ОАЭ и семи европейских странах. Таким способом экспертам удалось охватить десять различных операторов и разные технологии связи.

После этого исследователи наблюдали за отчетами о доставке и собирали данные с сигнатурами геолокации. Далее все эти сведения скармливались модели машинного обучения. МО-алгоритм использовал в общей сложности 60 узлов (10 входов, 10 выходов, 40 скрытых). Полученная в обучении информация также включала местоположение приема, состояние подключения, тип сети, расстояние до приемника и пр.

 

Как выяснили (PDF) специалисты, их модель способна обеспечить высокую точность:

Злоумышленники научились использовать умные кормушки для слежки

Злоумышленники могут использовать взломанные умные кормушки для животных для слежки за владельцами. Для получения информации применяются встроенные в устройства микрофоны и видеокамеры. Получив несанкционированный доступ, атакующие способны наблюдать за происходящим в помещении и перехватывать данные.

Об использовании таких устройств в криминальных целях рассказал агентству «Прайм» эксперт Kaspersky ICS CERT Владимир Дащенко.

«Это уже не гипотетическая угроза: известны случаи взлома домашних камер, видеонянь, кормушек для животных и других умных приборов», — предупреждает эксперт.

По словам Владимира Дащенко, вопросам кибербезопасности таких устройств часто не уделяется должного внимания. Между тем любое оборудование с доступом в интернет может стать точкой входа для злоумышленников.

Скомпрометированные устройства могут использоваться и для атак на другие элементы домашней сети — например, смартфоны или компьютеры. Кроме того, они способны становиться частью ботнетов, применяемых для DDoS-атак или майнинга криптовалют. На подобные риски почти год назад обращало внимание МВД России.

Среди признаков возможной компрометации умных устройств эксперт называет самопроизвольные отключения, резкие изменения сетевой активности, появление сообщений об ошибках или другие нетипичные события.

RSS: Новости на портале Anti-Malware.ru