В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

В Петербурге создали нейросеть по отслеживанию подозрительных транзакций

Ученые из Санкт-Петербурга настроили нейросеть на борьбу с мошенничеством в интернете. Она способна отличать подозрительные транзакции от безопасных и отсеивать мошенников, уверяют разработчики.

О новой модели ИИ в кибербезопасности ТАСС рассказали в Санкт-Петербургском политехническом университете Петра Великого (СПбПУ). Речь о модели графовой нейросети (графы — структуры данных, представляющие собой сети с парными связями внутри).

При обучении нейросети дополнительно учитывалась идентификационная информация: номер банковской карты, данные об отправителе и получателе, тип “пластика”, характеристики устройства, с помощью которого была совершена транзакция, и другое.

“Во время экспериментальных испытаний модель показала свой высокий потенциал", — говорится в сообщении ученых.

Особенность новой модели в том, что она уделяет внимание определенным закономерностям, по которым можно распознать противоправные действия, добавляют разработчики.

"Если человек открыл счет в банке полгода назад и за этот период времени средняя сумма транзакций за день составляла 1 тыс, рублей, после чего в один день он получил денежные переводы в сумме 30 тыс. рублей, вероятность того, что нейронная сеть отнесет этого человека к классу мошенников, возрастет", — приводит в пример пресс-служба Политеха слова доктора технических наук, профессора Института кибербезопасности и защиты информации СПбПУ Дарьи Лавровой.

Создатели новой модели нейросети уверены, что их разработку уже сейчас можно использовать на первой линии защиты от интернет-мошенничества.

Но технические методы все равно не способны полностью защитить от обмана, так как самое уязвимое звено — не компьютер, а человек, заключают ученые.

Добавим, накануне в “Лаборатории Касперского” рассказали о проверке ChatGPT на умение распознавать фишинговые ссылки. Выяснилось, что нейросеть знает признаки риска, хорошо определяет атакуемые организации, но склонна видеть опасность там, где ее нет.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru