В Израиле придумали маску, защищающую от технологий распознавания лиц

В Израиле придумали маску, защищающую от технологий распознавания лиц

В Израиле придумали маску, защищающую от технологий распознавания лиц

На ткань или бумагу наносят определенный рисунок. Паттерн не даёт технологиям распознать человека в маске. Шаблон справляется с видеосистемами по всему миру, но исследователи говорят, что камеры можно “натаскать”.

Пандемия COVID-19 сделала ношение масок привычной практикой, что сначала сильно тормозило работу систем распознавания лиц по всему миру. Со временем технологии адаптировались — теперь обычная медицинская или любая дизайнерская маска не мешает установить личность.

Ученые из Бен-Гуриона и Тель-Авива решили проверить гипотезу: можно ли создать такую маску, которая не поддается системам распознавания лиц. 

Исследователи экспериментировали с разными рисунками и градиентами. В итоге они получили шаблон, который ставит в тупик любую FRT (Facial recognition technology). Маска по очертаниям напоминает строение черепа — на ткани прослеживается рот, нос, скулы и даже часть глаз. Всё это окрашено в сложный градиент “радужных” цветов. 

“Мы проверили эффективность нашей маски в полевых условиях, — говорят исследователи. — Система смогла идентифицировать только 3% участников. Пол не имеет значения”.

Человека в обычной маске камера узнает в 80% случаев. Ученые говорят, что придуманный шаблон не является единственно возможным. При желании можно разработать модель под каждую технологию, на которой сегодня работают мировые системы распознавания лиц.

Исследователи считают, что и с этой угрозой можно справиться. Например, настроить так системы, чтобы они расценивали любую надетую на лицо маску как простую медицинскую. Это поможет технике не “растеряться”. 

Еще один “рабочий” вариант — научить камеры восстанавливать нижнюю часть лица, ориентируясь только на верхнюю. 

“Существует популярное направление — генеративно-состязательная сеть (GAN), — рассказывает аспирант Алон Золфи, руководивший исследованием “враждебных” масок. — Оно использует известные “входные данные” и дорабатывает портрет. Правда, это “тяжелый” подход: он требует совершенно другой архитектуры технических решений и обучения. Большую роль в этом процессе играет и человек, который стоит за камерой”.

В отчёте (PDF) специалисты поделились ссылкой на видео, демонстрирующее эффективность их разработки. Мы приводим ролик ниже:

Кибершпионы в России переключились на НИОКР и инженерные предприятия

Доля кибератак на российские организации, совершаемых с целью шпионажа, заметно выросла. По данным портала киберразведки BI.ZONE Threat Intelligence, в 2025 году на шпионские операции пришлось уже 37% атак (против 21% годом ранее). Иными словами, если раньше шпионской была примерно каждая пятая атака, то теперь — уже почти каждая третья.

При этом госсектор остаётся для таких группировок целью номер один. На органы государственного управления приходится 27% атак шпионских кластеров.

Но интерес злоумышленников всё чаще смещается и в сторону науки и технологий. Доля атак на организации, связанные с НИОКР, за год выросла вдвое — с 7% до 14%.

Как отмечает руководитель BI.ZONE Threat Intelligence Олег Скулкин, рост доли шпионских атак почти в полтора раза стал одним из ключевых трендов 2025 года. По его словам, специалисты наблюдают более 100 кластеров, нацеленных на Россию и страны СНГ, и около 45% из них — это именно шпионские группировки.

Интересно, что такие кластеры сильно различаются по уровню подготовки. В одних случаях злоумышленники применяют технически сложные инструменты, но выдают себя плохо составленными фишинговыми письмами. В других — атаки относительно простые, зато адаптированы под локальный контекст и выглядят максимально правдоподобно.

Так, во второй половине декабря 2025 года группировка Rare Werewolf атаковала научно-исследовательское и производственное предприятие оборонно-промышленного комплекса. Жертве отправили письмо якобы с коммерческим предложением на поставку и монтаж сетевого оборудования — от имени сотрудника научно-производственного центра беспилотных систем.

Во вложении не было классических зловредов. Вместо этого использовались легитимные инструменты: AnyDesk для удалённого доступа, 4t Tray Minimizer для скрытия окон и утилита Blat — для незаметной отправки похищенных данных. Такой подход позволяет дольше оставаться незамеченными и обходить системы защиты.

Впрочем, легитимными программами дело не ограничивается. Почти все шпионские кластеры активно применяют зловред собственной разработки. Новые самописные инструменты помогают обходить средства защиты и закрепляться в инфраструктуре на длительное время.

Кроме того, такие группировки, как правило, не стеснены в ресурсах. Они могут позволить себе покупку дорогостоящих эксплойтов, включая 0-day. Ранее специалисты BI.ZONE фиксировали атаки кластера Paper Werewolf, который, предположительно, приобрёл на теневом форуме эксплойт к уязвимости в WinRAR за 80 тысяч долларов.

Судя по динамике, кибершпионаж становится всё более системным и профессиональным — и явно не собирается сдавать позиции.

RSS: Новости на портале Anti-Malware.ru