API Hammering как способ избежать детектирования в песочнице

API Hammering как способ избежать детектирования в песочнице

API Hammering как способ избежать детектирования в песочнице

Исследователи из Palo Alto Networks обнаружили образцы вредоносов Zloader и BazarLoader, использующие необычные способы реализации механизма API Hammering (от hammer — стучать, долбить). Эта техника маскировки позволяет сдержать исполнение вредоносного кода в песочнице за счет многочисленных мусорных вызовов API-функций Windows: пока они обрабатываются, зловред спит, и его намерения неясны.

Чаще всего для выполнения операции сна в контролируемой среде вредоносы, со слов экспертов, используют API-функцию Sleep. Более изощренный способ самозащиты предполагает циклическую отсылку ICMP-пакетов на какой-нибудь IP. Отправка и получение этих бесполезных пингов требуют времени, и запуск вредоносных функций в итоге происходит с задержкой.

Многие песочницы уже умеют выявлять подобные трюки, поэтому вирусописателям приходится искать другие способы, чтобы уберечь свои коды от детектирования во враждебном окружении. Одним из известных и менее распространенных способов антисэндбокса является API Hammering — использование огромного количества бессмысленных обращений к Windows API.

Загрузчик BazarLoader ранее с этой целью вызывал 1550 раз функцию printf. Новая версия, попавшая в поле зрения Palo Alto, использует длинный цикл обращений к произвольным ключам системного реестра (вполне легитимное поведение), который может повторяться произвольное число раз.

Количество итераций и список ключей реестра генерируются по месту. Зловред считывает из папки System32 первый файл подходящего размера, кодирует его, удаляя почти все нулевые байты, и вычисляет для итераций значение на основе сдвига первого нулевого байта в этом файле. Список ключей реестра тоже составляется с помощью закодированного файла — из фрагментов данных фиксированной длины.

Исследователи подчеркивают, что на разных Windows-машинах число итераций маскировочного цикла и создаваемые списки ключей реестра неодинаковы — из-за разницы в версиях ОС, наборах установленных обновлений и содержимого папки System32. Механизм API Hammering встроен в упаковщик BazarLoader и тормозит, таким образом, распаковку полезной нагрузки.

Модульный троян Zloader применяет ту же технику обхода сэндбокса, но вместо длинных повторяющихся циклов использует четыре больших подпрограммы с вложенными вызовами множества мелких процедур. Последние при выполнении обращаются к Windows API (каждая вызывает по четыре функции — GetFileAttributesW, ReadFile, CreateFileW и WriteFile). В сумме количество вводящих в заблуждение вызовов, которые генерирует зловред, превышает 1 млн, при этом его поведение схоже с легитимной программой, выполняющей файловые операции ввода-вывода.

В Windows 11 нашли способ включить нативный NVMe — SSD ускорились до 15%

Microsoft сделала важный шаг в сторону ускорения Windows — компания объявила, что Windows Server 2025 получит нативную поддержку NVMe-накопителей. Есть хорошая новость для обычных пользователей: поскольку архитектура Windows 11 во многом унаследована от Windows 10, энтузиасты уже нашли способ включить нативную NVMe-поддержку вручную — через правку реестра.

И, судя по первым отзывам, эффект вполне ощутимый. Пользователи, которые решились на эксперимент, сообщают о:

  • снижении задержек;
  • росте скорости чтения и записи;
  • приросте производительности примерно на 10–15%;
  • снижении нагрузки на процессор.

 

 

Кроме того, система становится устойчивее в сценариях с активной работой с диском — когда несколько приложений одновременно нагружают хранилище, Windows реже «замирает» целиком.

 

Впрочем, магии для всех не случилось: часть пользователей признаётся, что не заметила вообще никаких изменений после включения функции.

Исторически Windows работает со всеми накопителями через SCSI. Даже NVMe-диски в системе фактически «притворяются» SCSI-устройствами — команды NVMe просто переводятся в понятный Windows формат. Под это поведение за годы подстроились драйверы, утилиты и софт.

При переходе на нативный NVMe этот слой исчезает — и тут начинаются нюансы:

  • некоторые утилиты управления дисками перестают видеть NVMe-накопители;
  • другие, наоборот, обнаруживают их дважды;
  • может измениться идентификатор диска, из-за чего программы резервного копирования и другой софт теряют накопитель.

По данным Microsoft, нативная NVMe-поддержка в Windows рассчитана на 64 000 очередей, каждая из которых может обрабатывать 64 000 команд одновременно. В теории — это более 4 миллиардов операций в очереди.

Для сравнения: SCSI-протоколы ограничены 32 командами на очередь. Разница — колоссальная, особенно с учётом современных NVMe-дисков и систем с DDR5.

Если вы любите выжимать максимум из железа — попробовать можно уже сейчас, инструкции доступны. Но есть важное «но»:
перед экспериментами обязательно сделайте резервную копию системы или протестируйте всё в виртуальной среде. Правка реестра на таком уровне вполне может привести к нестабильной работе Windows.

В долгосрочной перспективе нативный NVMe, скорее всего, станет стандартом, когда разработчики начнут учитывать его в своих продуктах. А пока это история для энтузиастов, которые готовы немного рискнуть ради скорости.

RSS: Новости на портале Anti-Malware.ru