Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Эксперты разработали систему для решения CAPTCHA на сайтах дарквеба

Команда исследователей из университетов Аризоны, Джорджии и Флориды представили основанную на машинном обучении систему для решения тестов CAPTCHA. По словам экспертов, их разработка способна обойти 94,4% CAPTCHA на сайтах в дарквебе.

Этот «решатель» специалисты создали с конкретной целью: упростить сбор данных киберразведки, который сейчас требует участия человека для решения CAPTCHA вручную.

Как известно, определённые сайты используют «капчу», чтобы отличить реальных пользователей от ботов. В дарквебе эта технология особенно актуальна, поскольку веб-ресурсам «тёмной сети» необходимо постоянно защищать себя от DDoS-атак.

Есть мнение, что качественная CAPTCHA может создать достаточный барьер, чтобы сдержать ботов конкурентов. Причём каждая площадка использует свою капчу, что затрудняет создание единого инструмента для их обхода.

Именно поэтому сбор важных данных в дарквебе представляет определённую сложность для специалистов по кибербезопасности и при этом ещё обходится дорого — для решения капчи приходится использовать сотрудников.

Чтобы облегчить жизнь исследователям, эксперты разработали систему (PDF), обрабатывающую растровые изображения. Эта система может отличить буквы от цифр, попеременно сравнивая их. Таким образом, размер CAPTCHA никак не повлияет на новый «решатель».

 

Система использует образцы капчи из многих регионов, чтобы учиться отличать мелкие детали: линии и края. В результате разработку не проведёшь изменением размера шрифта, цвета и даже поворотом символов.

 

Авторы солвера выложили его на GitHub, поэтому существует риск использования новой системы и в киберпреступных целях.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru