Вышла R-Vision TIP 2.0 с новым источником данных Threat Intelligence

Вышла R-Vision TIP 2.0 с новым источником данных Threat Intelligence

Вышла R-Vision TIP 2.0 с новым источником данных Threat Intelligence

Компания R-Vision представила платформу анализа данных об угрозах R-Vision Threat Intelligence Platform (TIP) версии 2.0. Ключевые изменения затронули механизм ранжирования индикаторов компрометации, интеграцию с системой R-Vision IRP, а также у пользователей появилась возможность получения качественных данных с помощью нового источника Threat Intelligence.

Одним из основных обновлений платформы стало улучшение скоринговой модели, посредством которой рассчитывается рейтинг индикаторов компрометации. Новая модель производит расчет рейтинга на основании статистических метрик, которые рассчитываются для собранных данных. При расчете учитывается ряд параметров, среди них – взаимосвязи индикатора и весь связанный с ним контекст, полнота поступающей информации и своевременность предоставления данных относительно других подключенных источников. Также учитывается факт нахождения или отсутствия индикатора компрометации в списке исключений. Благодаря усовершенствованной скоринговой модели R-Vision TIP аналитики центров мониторинга могут выявлять наиболее релевантные и вредоносные индикаторы компрометации и работать с актуальными для компании угрозами.

В новой версии платформы улучшен механизм интеграции с R-Vision IRP: теперь данные событий обнаружения раскладываются по полям индикаторов в карточке инцидента на стороне IRP-системы, а для случаев массовых детектов реализована возможность группировки событий при отправке в R-Vision IRP. Благодаря этой функциональности можно более гибко настраивать реагирование на инциденты в зависимости от количества или степени вредоносности возникающих событий обнаружения.

Пользователи R-Vision TIP 2.0 смогут получать данные об угрозах из нового источника. R-Vision Threat Intelligence feed – это отдельный сервис, который автоматически собирает и обрабатывает TI-отчеты из открытых источников, извлекает из них индикаторы компрометации и связанный контекст и передает все данные в систему. При подключении сервиса R-Vision Threat Intelligence feed к платформе пользователю будут доступны TI-отчеты в человекочитаемом формате. У аналитика будет информация обо всех важных объектах, связанных с отчетом: индикаторах компрометации, злоумышленниках, вредоносном ПО, а также иной контекст. Данные отчета можно проанализировать и использовать для поиска в инфраструктуре организации или для интеграции со средствами защиты. R-Vision Threat Intelligence feed помогает получать качественную и полную информацию об угрозах, не расходуя время аналитиков SOC на обработку отчетов формата pdf вручную и последующее занесение и связывание данных в используемой системе.

«Постоянно общаясь с нашими пользователями, мы видим, что потребности в Threat Intelligence становятся все более зрелыми из года в год. Ожидания от TI-платформ растут: пользователи ждут не просто агрегатор данных, но и механизмы, которые будут обеспечивать качество данных, автоматизацию операций поиска индикаторов компрометации и различные интеграции с внутренней экосистемой ИБ», — отметил Антон Соловей, менеджер продукта R-Vision Threat Intelligence Platform.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Языковые модели тупеют от мусорных данных из интернета

Группа исследователей из Университета Техаса и Университета Пердью предложила необычную идею: большие языковые модели (LLM), вроде ChatGPT, могут «тупить» от некачественных данных примерно так же, как люди — от бесконечных часов в соцсетях.

В отчёте специалисты выдвигают «гипотезу гниения мозга LLM». Суть проста: если продолжать дообучать языковую модель на «мусорных» текстах из интернета, она со временем начнёт деградировать — хуже запоминать, терять логику и способность к рассуждению.

Авторы понимают, что отличить хороший контент от плохого сложно. Поэтому они решили изучить 100 миллионов твитов с HuggingFace и отобрать те, что подходят под определение «junk».

В первую группу попали короткие твиты с большим количеством лайков и репостов — те самые, которые вызывают максимальное вовлечение, но несут минимум смысла. Во вторую — посты с «низкой семантической ценностью»: поверхностные темы, кликбейт, громкие заявления, конспирология и прочие «триггерные» темы.

 

Чтобы проверить качество отбора, результаты GPT-4o сверили с оценками трёх аспирантов — совпадение составило 76%.

Учёные обучили четыре разные языковые модели, комбинируя «мусорные» и «качественные» данные в разных пропорциях. Потом прогнали их через тесты:

  • ARC — на логическое рассуждение,
  • RULER — на память и работу с длинным контекстом,
  • HH-RLHF и AdvBench — на этические нормы,
  • TRAIT — на анализ «личностного стиля».

Результаты оказались любопытными: чем больше в обучающем наборе было «интернет-мусора», тем хуже модель справлялась с задачами на рассуждение и память. Однако влияние на «этичность» и «черты личности» было неоднозначным: например, модель Llama-8B с 50% «мусора» даже показала лучшие результаты по «открытости» и «низкой тревожности».

Исследователи сделали вывод: переизбыток интернет-контента может привести к деградации моделей и призвали разработчиков тщательнее отбирать данные для обучения. Особенно сейчас, когда всё больше онлайн-текста создаётся уже самими ИИ — и это может ускорить эффект так называемого model collapse, когда модели начинают обучаться на собственных ошибках.

Учёные шутят: если так пойдёт и дальше, возможно, придётся вернуться к книгам — хотя бы ради того, чтобы «накормить» модели чем-то действительно качественным.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru