Исследователи спрятали зловреда в модели нейросети, и это сработало

Исследователи спрятали зловреда в модели нейросети, и это сработало

Исследователи спрятали зловреда в модели нейросети, и это сработало

В Университете Китайской академии наук убедились, что использование технологии нейронных сетей для доставки вредоносного кода способно надежно скрыть его от антивирусов. Исследование показало, что в модели можно безбоязненно подменить до половины искусственных нейронов — потеря производительности составит менее 7%, и защитные сканеры вряд ли заметят присутствие зловреда.

Для экспериментов была выбрана (PDF) сверточная нейросеть AlexNet — классическая модель, зачастую используемая для проверки эффективности алгоритмов машинного зрения. Вооружившись несколькими образцами реальных вредоносов, исследователи по-разному прятали их в скрытых слоях сети, фиксируя процент замен и точность предсказаний при прогоне контрольных изображений.

В итоге оказалось, что в 178М-байтовую модель AlexNet можно внедрить до 36,9МБ стороннего кода с потерей производительности менее 1%. Проверка результатов с помощью 58 антивирусов из коллекции VirusTotal не дала ни одного положительного срабатывания.

Для проведения атаки злоумышленнику, со слов исследователей, нужно вначале построить нейросеть и потренировать ее на заранее подготовленном наборе данных. Можно также приобрести уже обученный образец, внедрить вредоносный код и убедиться, что его присутствие не влечет неприемлемую потерю производительности. Подготовленная модель публикуется в общедоступном хранилище и начинает раздаваться, например, как апдейт в рамках атаки на цепочку поставок.

Предложенный подход предполагает дизассемблирование вредоносного кода перед встраиванием в искусственные нейроны. Обратную сборку выполняет программа-загрузчик, запущенная на целевом устройстве. Исполнение зловреда при этом можно предотвратить, если настройки атакуемой системы предусматривают верификацию загружаемого ИИ-контента. Выявить непрошеного гостя сможет также статический или динамический анализ кода.

«Обнаружить такого зловреда с помощью антивирусов в настоящее время затруднительно, — комментирует известный ИБ-специалист Лукаш Олейник (Lukasz Olejnik). — Но причина лишь в том, что никому в голову не приходит искать его в подобном месте».

Эксперты предупреждают, что рост популярности технологии нейросетей открывает новые возможности для злоупотреблений. Ее можно использовать, например, для взлома CAPTCHA, троллинга, шантажа и мошенничества, а также засева бэкдоров (PDF). Исследование возможных сценариев абьюза ИИ — залог успешной борьбы с этой ИБ-угрозой.

Минцифры создаст полигон для тестирования систем с ИИ на безопасность

Минцифры планирует создать киберполигон для тестирования систем с искусственным интеллектом (ИИ) на безопасность. В первую очередь речь идёт о решениях, предназначенных для применения на объектах критической инфраструктуры, а также о системах с функцией принятия решений.

О том, что министерство ведёт работу над созданием такого полигона, сообщил РБК со ссылкой на несколько источников.

Площадка будет использоваться для тестирования ИИ-систем, которые в дальнейшем должны пройти сертификацию ФСТЭК и ФСБ России. Это предусмотрено правительственным законопроектом «О применении систем искусственного интеллекта органами, входящими в единую систему публичной власти, и внесении изменений в отдельные законодательные акты».

Документ вводит четыре уровня критичности ИИ-систем:

  • минимальный — влияние на безопасность отсутствует или минимально;
  • ограниченный;
  • высокий — относится к системам, используемым на объектах критической информационной инфраструктуры;
  • критический — системы, способные угрожать жизни и здоровью людей или безопасности государства, а также автономные комплексы, принимающие самостоятельные решения.

Определять уровень критичности будет Национальный центр искусственного интеллекта в сфере госуправления при правительстве. Эта же структура займётся ведением реестра сертифицированных ИИ-систем.

Конкретные требования к сертификации планируется закрепить в отдельных нормативных документах, которые пока находятся в разработке. На текущем этапе единственным обязательным условием является включение программного обеспечения в реестр Минцифры.

По данным «Российской газеты», распространять новые требования на коммерческие ИИ-решения не планируется. При этом в аппарате первого вице-премьера Дмитрия Григоренко пояснили, что ключевая цель законопроекта — снизить риски применения ИИ в сферах с высокой ценой ошибки, включая здравоохранение, судопроизводство, общественную безопасность и образование.

RSS: Новости на портале Anti-Malware.ru