R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

R-Vision расшарила модель для скоринга IoC в рамках Threat Intelligence

Компания R-Vision опубликовала на GitHub исходный код модели для ранжирования индикаторов компрометации (IoC), которую можно использовать в системах управления данными о киберугрозах. Проект, предлагаемый вниманию ИБ-сообщества, распространяется по лицензии Apache License v2.0.

Информация об актуальных угрозах (Threat Intelligence) помогает организациям выстроить эффективную стратегию защиты от кибератак. К таким данным относятся IoC, описания техник и тактик злоумышленников, степень риска, связанного с конкретными угрозами.

Созданный в R-Vision прототип системы расчета репутации IoC использует алгоритм, предложенный (PDF) исследователями из Амстердамского университета. Их методика позволяет сократить число ложноположительных результатов при выделении и оценке IoC.

Скоринговая модель R-Vision определяет рейтинг IoC по трем основным параметрам: 

  • количество взаимосвязей между индикаторами и контекстом;
  • сравнительная скорость предоставления данных источником;
  • полнота данных в источнике (в сравнении с совокупностью данных из всех источников).

В модели также имеются дополнительные коэффициенты. Один из них, к примеру, позволяет учитывать присутствие IoC в списках известных ресурсов с чистой репутацией. Другой коэффициент дает возможность регулировать скорость устаревания рейтинга. Модель легко расширяется за счет добавления других коэффициентов, и каждому можно задать нужный вес в зависимости от конкретной задачи.

«Для эффективного противостояния киберпреступности необходимо обмениваться информацией о киберугрозах, — комментирует Антон Соловей, менеджер продукта R-Vision Threat Intelligence Platform. — Обладая широкой экспертизой в обработке и анализе индикаторов компрометации, мы стремимся вносить вклад в развитие ИБ-сообщества и делиться полезными наработками. Представленную модель можно рассматривать как академический проект или встроить в собственную систему управления данными Threat Intelligence для расчета репутации индикаторов компрометации и принятия решений о дальнейших действиях с ними на основе полученных оценок».

В Telegram появился ИИ-помощник Mira, интегрированный с Cocoon

Компания The Open Platform, разработчик продуктов для экосистемы Telegram, объявила о запуске ИИ-ассистента Mira. Он работает полностью внутри мессенджера и обрабатывает запросы непосредственно в чате.

С помощью Mira можно проводить поиск информации, отвечать на вопросы собеседников, создавать картинки и видео. Текстовый доступ к ИИ-помощнику бесплатен, а для промптов на основе фото и видео нужны токены, которые можно купить за «звезды» (внутренняя валюта Telegram).

Новинка работает в двух режимах. В приватном все запросы проходят через децентрализованную сеть Cocoon и обрабатываются с упором на конфиденциальность — с применением шифрования и без сохранения данных.

В стандартном режиме Mira запоминает промпты и предпочтения пользователя, учитывает контекст диалогов и подстраивается под стиль общения. При выполнении задач используются несколько моделей: для текстовых запросов — ChatGPT, для создания изображений — Nano Banana, для генерации видео — WAN 2.2 от Alibaba Cloud.

В дальнейшем планируется распространить доступ к ИИ на закрытые чаты, каналы и группы, а также расширить функциональность умного помощника: научить его делать саммари чатов, создавать уникальные ИИ-персонажи. Появится Pro-версия с расширенным списком генераторов текстов, фото, видео, будет реализована интеграция Mira с криптокошельком Telegram.

RSS: Новости на портале Anti-Malware.ru