Система раннего обнаружения аномалий Kaspersky MLAD наконец вышла в релиз

Система раннего обнаружения аномалий Kaspersky MLAD наконец вышла в релиз

Система раннего обнаружения аномалий Kaspersky MLAD наконец вышла в релиз

«Лаборатория Касперского» сообщила, что систему Kaspersky Machine Learning for Anomaly Detection (MLAD) теперь может приобрести более широкий круг клиентов. Напомним, что Kaspersky MLAD позволяет обнаружить аномалии в технологическом процессе на самом раннем этапе.

Как подчёркивают разработчики, Kaspersky MLAD располагает алгоритмами машинного обучения, анализирующими телеметрию, поступающую с датчиков оборудования. Помимо этого, система обеспечивает клиентов многофункциональным графическим интерфейсом, благодаря которому проще детально анализировать аномалии.

Таким образом, Kaspersky MLAD может выявить целый ряд отклонений: перебои в работе оборудования, кибератаки, ошибки операторов и тому подобное. Эти функциональные возможности делают систему незаменимой в промышленности, где важно детектировать аномалию на самой ранней стадии.

Как подсчитали аналитики «Лаборатории Касперского», сокращение времени простоя даже на 50% позволяет крупной электростанции экономить до миллиона долларов в год. А нефтеперерабатывающий завод благодаря такому сокращению сбережёт и того больше — $2,5 миллиона.

За счёт работы нейронной сети Kaspersky MLAD способен анализировать телеметрию с различных датчиков, причём делать это в режиме реального времени. В итоге от системы не скроются даже незначительные отклонения — изменения динамики сигналов или корреляций. Также заказчик может сам добавить индивидуальные диагностические правила для конкретных случаев.

Стоит отметить и графический интерфейс Kaspersky MLAD, который отлично подходит для анализа выявленных отклонений. Диаграммы всех отслеживаемых процессов помогут экспертам увидеть, что именно пошло не так и в какой части системы.

Растущая мощность ИИ-моделей OpenAI ставит под угрозу кибербезопасность

Компания OpenAI предупреждает, что ее ИИ-модели стремительно расширяют возможности, которые пригодны для нужд киберобороны, но в тоже время повышают риски в случае злоупотребления, и это нельзя не учитывать.

Так, проведенные в прошлом месяце CTF-испытания GPT-5.1-Codex-Max показали результативность 76% — почти в три раза выше, чем GPT-5 на тех же задачах в августе (27%).

Разработчик ожидает, что последующие ИИ-модели продолжат этот тренд, и их можно будет использовать для аудита кодов, патчинга уязвимостей, создания PoC-эксплойтов нулевого дня, а также тестирования готовности организаций к сложным, скрытным целевым атакам.

Во избежание абьюзов OpenAI принимает защитные меры: учит свои творения отвечать отказом на явно вредоносные запросы, мониторит их использование, укрепляет инфраструктуру, применяет EDR и Threat Intelligence, старается снизить риск инсайда, внимательно изучает обратную связь и наладила партнерские связи со специалистами по Red Teaming.

В скором времени компания с той же целью запустит программу доверенного доступа (trusted access), в рамках которой киберзащитники смогут с разной степенью ограничений пользоваться новыми возможностями выпускаемых моделей. В настоящее время их приглашают присоединиться к бета-тестированию ИИ-инструмента выявления / коррекции уязвимостей Aardvark, подав заявку на сайте OpenAI.

Для расширения сотрудничества с опытными специалистами по киберзащите будет создан консультационный Совет по рискам — Frontier Risk Council. Компания также взаимодействует с другими ИИ-исследователями через НКО Frontier Model Forum, работая над созданием моделей угроз и выявлением узких мест, способных создать препятствие ИИ-атакам.

RSS: Новости на портале Anti-Malware.ru