Критическая уязвимость в node-netmask затрагивает 279 тысяч приложений

Критическая уязвимость в node-netmask затрагивает 279 тысяч приложений

Критическая уязвимость в node-netmask затрагивает 279 тысяч приложений

В популярном npm-пакете node-netmask выявлена уязвимость, позволяющая обойти ограничение доступа к IP-адресам и провести атаку SSRF, RFI или LFI на приложение на базе Node.js. Проблема устранена с выпуском версии 2 продукта.

Библиотека netmask выполняет парсинг IP-адресов при обращении к сетевым ресурсам через приложение. На этот компонент полагаются свыше 279 тыс. проектов на GitHub; из репозитория npm его еженедельно скачивают по 3 млн раз и более.

Уязвимость в netmask, получившая идентификатор CVE-2021-28918, вызвана ошибкой в реализации проверки входных данных и проявляется при обработке IP-адресов смешанного формата.

Согласно спецификациям IETF, адреса IPv4 в текстовом виде могут быть представлены в различных форматах, в том числе в десятичном и восьмеричном. В последнем случае строковое значение адреса начинается с нуля — например, 0150.0024.0073.0321, что соответствует более привычному 104.20.59.209. Основные браузеры обычно отслеживают префикс «0» в адресной строке и автоматически совершают перевод IP-адреса в десятичный формат.

Как оказалось, netmask эту особенность не учитывает и попросту отбрасывает начальный 0, обрабатывая все части адреса как десятичные числа. Злоумышленник может, например, запросить ресурс, указав IP-адрес как 0177.0.0.1 (эквивалентно 127.0.0.1 — кольцевому адресу, возвращающему к локальному хост-компьютеру), и уязвимый модуль обработает его как внешний адрес 177.0.0.1. В итоге использующее netmask приложение не уловит тождества 0177.0.0.1 и 127.0.0.1 и загрузит ресурс в обход возможных запретов.

Точно так же при обращении к приложению на базе Node.js автор атаки может указать localhost-адрес как 0127.0.0.1 (соответствует десятичному 87.0.0.1). Модуль netmask обработает его как публичный 127.0.0.1, и искомый доступ будет получен.

 

Уязвимость в netmask позволяет также обойти проверку разрешений на доступ к интранет-адресам, VPN, контейнерам и узлам локальной сети путем ввода IP-адреса 012.0.0.1 (10.0.0.1), который netmask воспримет как 12.0.0.1 (публичный).

Обнаружившие проблему исследователи отметили, что она «катастрофична», так как возможность манипуляции значениями IP-адресов на уровне ввода грозит атаками типа RFI (Remote File Inclusion, динамическое подключение файлов с других серверов), LFI (Local File Inclusion, включение в цепочку выполнения локальных файлов) и SSRF (подмена адресов на стороне сервера).

Патч для netmask вышел десять дней назад в составе сборки 2.0.0 пакета; разработчикам приложений настоятельно рекомендуется обновить зависимости в коде.

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru