Генпрокуратура составила портрет типичного российского киберпреступника

Генпрокуратура составила портрет типичного российского киберпреступника

Генпрокуратура составила портрет типичного российского киберпреступника

В Генпрокуратуре составили портрет типичного российского киберпреступника, который в корне не соответствует тому, что нам демонстрируют в художественных кинофильмах. По мнению представителей ведомства, стандартному российскому «хакеру» 30-35 лет, и он может не иметь специального технического образования.

Портретом киберпреступника по версии Генпрокуратуры поделился представитель ведомства Александр Куренной. Несмотря на отсутствие соответствующего образования, составители образа считают, что среднестатистический «российский хакер» должен обладать определенными знаниями и «быть подкованным в технических вещах».

Куренной отметил, что современные киберпреступники все чаще стараются использовать анонимные сети вроде даркнета (DarkNet), которые существуют параллельно знакомому всем интернету.

«Это стал теперь более технический способ преступлений, чем интеллектуальный», — передают «Ведомости» слова Куренного.

Куренной заострил внимание на том, что в настоящее время в российском законодательстве нет понятия «киберпреступление». Такое правонарушение трактуется иначе — «преступление, совершенное с применением информационно-коммуникационных технологий».

97% компаний в России внедряют ИИ, но 54% не видят его ценности

UserGate изучила, как российские компании внедряют инструменты на базе ИИ и что мешает делать это быстрее. Опрос прошёл в январе 2026 года, в нём участвовали 335 топ-менеджеров компаний с выручкой от 100 млн рублей в год. Картина получилась довольно показательная: 97% компаний уже используют ИИ, тестируют его в пилотах или собираются внедрять в ближайшее время.

То есть искусственный интеллект из разряда «модного тренда» окончательно перешёл в категорию рабочих инструментов.

Чаще всего ИИ применяют для вполне прикладных задач. На первом месте — генерация отчётов и аналитики (42%). Далее идут оптимизация сетевой инфраструктуры (38%), анализ больших массивов логов (37%), ускорение расследований инцидентов (35%) и повышение эффективности Help Desk (32%).

Иными словами, бизнес в первую очередь использует ИИ там, где он помогает сэкономить время и ресурсы или усилить функции безопасности.

Интересно, что приоритеты зависят от масштаба компании. В корпоративном сегменте более 60% респондентов указали анализ больших логов как ключевое направление — что логично при объёмах данных в крупных ИТ-ландшафтах. В среднем бизнесе на первый план выходит оптимизация сетевой инфраструктуры (45%).

При этом 7% компаний пока вообще не рассматривают внедрение ИИ. Главные причины — неясная ценность технологии (54%) и неопределённость рисков (38%). Также среди барьеров называют отсутствие чёткого распределения ответственности (29%), ограниченные бюджеты (29%) и нехватку экспертизы (17%). По сути, речь идёт не столько о скепсисе, сколько о нехватке понимания, как именно внедрять ИИ и как управлять связанными с ним рисками.

Отдельно респондентов спросили, какие технологии окажут наибольшее влияние на кибербезопасность в ближайшие 12 месяцев. Лидером стали ИИ и машинное обучение — их назвали около половины представителей коммерческого и государственного сегментов. Даже те компании, которые пока осторожничают с практическим внедрением, всё равно рассматривают машинное обучение как ключевой фактор трансформации ИБ в среднесрочной перспективе.

Как отмечает руководитель отдела стратегической аналитики UserGate Юлия Косова, бизнес уже активно использует ИИ в операционных и защитных сценариях, но ожидания рынка зачастую опережают текущую практику. Дальнейший эффект, по её словам, будет зависеть от зрелости процессов, качества данных и способности управлять рисками.

RSS: Новости на портале Anti-Malware.ru