Группа компаний InfoWatch на форуме GISEC-2018 в Дубае, ОАЭ, анонсировала выход продукта InfoWatch Prediction в классе UEBA (User and Entity Behavior Analytics). Аналитический инструмент предназначен для автоматизированного решения прикладных задач на основе прогнозирования рисков информационной безопасности, которые связаны с кадровой и финансовой политикой, выявлением инсайдерства, компрометации учетных записей, а также другими критичными с точки зрения управления персоналом процессами в организации. Базовым сценарием в первой версии продукта стало заблаговременное определение системой сотрудников, которые собираются уволиться. Коммерческий релиз решения запланирован на 2018 год.
«Идеология InfoWatch Prediction нацелена на решение конкретных задач в области корпоративной информационной безопасности с возможностью проверки результата, — рассказал Андрей Арефьев, руководитель направления перспективных разработок ГК InfoWatch. — Ключевой особенностью нашего продукта является то, что он построен на строгой математической модели и позволяет предотвращать конкретные риски, а также проверить точность работы решения. Мы предоставляем компании инструмент, который позволяет с высокой точностью заблаговременно определить сотрудников, которые планируют покинуть штат, и тем самым минимизировать сопряженные с этим риски информационной безопасности».
Решение анализирует информационные потоки компании (Big Data) и на основании моделей, построенных с применением методов машинного обучения, вычисляет вероятность увольнения сотрудников компании. InfoWatch Prediction рассчитывает индивидуальный рейтинг каждого сотрудника, который может быть положительным или отрицательным. Положительный рейтинг свидетельствует о том, что человек находится в зоне риска, и чем выше показатель, тем больше вероятность его ухода.
InfoWatch Prediction прошел необходимые испытания в инфраструктуре ряда крупных компаний, ежедневно анализируя десятки тысяч событий. По проведенным промышленным испытаниям точность определения сотрудников, которые собираются уволиться, составила 90%. Помимо этого, продукт позволяет заказчику быстро убедиться в эффективности оценки на основании ретроспективной выборки данных.
«Мы можем продемонстрировать клиенту работоспособность системы почти мгновенно, хотя большинству других продуктов в области информационной безопасности требуются месяцы для сбора доказательств эффективности, и клиент вынужден тратить на это свои ресурсы: оборудование, время, деньги, — сообщил Андрей Арефьев. — Продукту достаточно лишь проанализировать данные, полученные с почтового сервера или DLP-системы в компании за последний год, после чего он определяет уволившихся сотрудников, и у клиента есть возможность сравнить этот результат с реальными данными из отдела кадров».
Для офицера безопасности организации выявление увольняющегося сотрудника позволяет применить специальные настройки политик безопасности, установить дополнительный контроль к его действиям и коммуникациям. Кроме того, решение позволяет не только минимизировать риски ИБ, но и будет полезно для реализации управленческого, финансового и кадрового учета в компании.
По словам Андрея Арефьева, издержки от потери работника для организации равны его годовому окладу. Они складываются из многих факторов: низкой эффективности работы сотрудника, намеревающегося уволиться, различных выплат при его уходе, ресурсов и времени, потраченных на поиск новых кадров, а также их последующую адаптацию, добавил он.
Также в рамках форума GISEC-2018 специалисты InfoWatch представили международный учебный центр цифровых технологий и кибербезопасности для стран Ближнего Востока, который направлен на подготовку и повышение квалификации специалистов в области информационной безопасности, интернета вещей, анализа больших данных, искусственного интеллекта, технологии блокчейн и прочих.
Минюст разместил на портале проектов нормативных актов законопроект, предусматривающий введение уголовной ответственности за нелегальный майнинг криптовалюты, а также за незаконную деятельность операторов майнинговой инфраструктуры.
Документ опубликован для общественного обсуждения и содержит поправки в Уголовный и Уголовно-процессуальный кодексы РФ.
Согласно проекту, в Уголовный кодекс предлагается добавить часть 6 в статью 171. В ней преступлением признаётся «осуществление майнинга цифровой валюты лицом, не включённым в реестр лиц, осуществляющих майнинг цифровой валюты, если такое включение является обязательным, либо оказание услуг оператора майнинговой инфраструктуры без включения в реестр операторов майнинговой инфраструктуры — при условии, что эти деяния причинили крупный ущерб гражданам, организациям или государству либо были сопряжены с извлечением дохода в крупном размере».
За такие действия предлагается наказывать штрафом до 1,5 млн рублей либо исправительными работами сроком до двух лет. При наличии отягчающих обстоятельств — крупного ущерба, значительного незаконного дохода или совершения преступления в составе организованной группы — штраф может увеличиться до 2,5 млн рублей. Также предусмотрены принудительные работы на срок до пяти лет или лишение свободы на тот же срок.
Отдельно отмечается проблема нелегального майнинга с использованием чужих устройств, когда добыча криптовалюты ведётся с помощью внедрённых на компьютеры пользователей вредоносных программ. В последние годы, как отмечают специалисты, майнинговые ботнеты начали создавать и на базе устройств «умного дома», объединяя их в распределённые сети.
Свидетельство о регистрации СМИ ЭЛ № ФС 77 - 68398, выдано федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 27.01.2017 Разрешается частичное использование материалов на других сайтах при наличии ссылки на источник. Использование материалов сайта с полной копией оригинала допускается только с письменного разрешения администрации.