Группа компаний InfoWatch на форуме GISEC-2018 в Дубае, ОАЭ, анонсировала выход продукта InfoWatch Prediction в классе UEBA (User and Entity Behavior Analytics). Аналитический инструмент предназначен для автоматизированного решения прикладных задач на основе прогнозирования рисков информационной безопасности, которые связаны с кадровой и финансовой политикой, выявлением инсайдерства, компрометации учетных записей, а также другими критичными с точки зрения управления персоналом процессами в организации. Базовым сценарием в первой версии продукта стало заблаговременное определение системой сотрудников, которые собираются уволиться. Коммерческий релиз решения запланирован на 2018 год.
«Идеология InfoWatch Prediction нацелена на решение конкретных задач в области корпоративной информационной безопасности с возможностью проверки результата, — рассказал Андрей Арефьев, руководитель направления перспективных разработок ГК InfoWatch. — Ключевой особенностью нашего продукта является то, что он построен на строгой математической модели и позволяет предотвращать конкретные риски, а также проверить точность работы решения. Мы предоставляем компании инструмент, который позволяет с высокой точностью заблаговременно определить сотрудников, которые планируют покинуть штат, и тем самым минимизировать сопряженные с этим риски информационной безопасности».
Решение анализирует информационные потоки компании (Big Data) и на основании моделей, построенных с применением методов машинного обучения, вычисляет вероятность увольнения сотрудников компании. InfoWatch Prediction рассчитывает индивидуальный рейтинг каждого сотрудника, который может быть положительным или отрицательным. Положительный рейтинг свидетельствует о том, что человек находится в зоне риска, и чем выше показатель, тем больше вероятность его ухода.
InfoWatch Prediction прошел необходимые испытания в инфраструктуре ряда крупных компаний, ежедневно анализируя десятки тысяч событий. По проведенным промышленным испытаниям точность определения сотрудников, которые собираются уволиться, составила 90%. Помимо этого, продукт позволяет заказчику быстро убедиться в эффективности оценки на основании ретроспективной выборки данных.
«Мы можем продемонстрировать клиенту работоспособность системы почти мгновенно, хотя большинству других продуктов в области информационной безопасности требуются месяцы для сбора доказательств эффективности, и клиент вынужден тратить на это свои ресурсы: оборудование, время, деньги, — сообщил Андрей Арефьев. — Продукту достаточно лишь проанализировать данные, полученные с почтового сервера или DLP-системы в компании за последний год, после чего он определяет уволившихся сотрудников, и у клиента есть возможность сравнить этот результат с реальными данными из отдела кадров».
Для офицера безопасности организации выявление увольняющегося сотрудника позволяет применить специальные настройки политик безопасности, установить дополнительный контроль к его действиям и коммуникациям. Кроме того, решение позволяет не только минимизировать риски ИБ, но и будет полезно для реализации управленческого, финансового и кадрового учета в компании.
По словам Андрея Арефьева, издержки от потери работника для организации равны его годовому окладу. Они складываются из многих факторов: низкой эффективности работы сотрудника, намеревающегося уволиться, различных выплат при его уходе, ресурсов и времени, потраченных на поиск новых кадров, а также их последующую адаптацию, добавил он.
Также в рамках форума GISEC-2018 специалисты InfoWatch представили международный учебный центр цифровых технологий и кибербезопасности для стран Ближнего Востока, который направлен на подготовку и повышение квалификации специалистов в области информационной безопасности, интернета вещей, анализа больших данных, искусственного интеллекта, технологии блокчейн и прочих.
Мошенники собирают персональные данные россиян, выдавая себя за представителей управляющих компаний или членов совета дома. Основным каналом для таких атак стали мессенджеры. Злоумышленники представляются знакомыми лицами из домового чата и просят уточнить или подтвердить персональные данные жителей.
О новой схеме сообщили РИА Новости со ссылкой на собственные источники.
Полученная информация используется для разных видов атак — от «угона» аккаунтов в государственных сервисах до получения сведений о кредитной истории, месте работы и другой конфиденциальной информации.
Тема ЖКХ давно используется мошенниками как прикрытие. Ранее фиксировались случаи рассылки поддельных квитанций с QR-кодом для оплаты услуг. Средства по таким ссылкам переводились на счета злоумышленников, а при сканировании QR-кода устройства пользователей могли заражаться вредоносными программами.
Летом сообщалось о росте активности мошенников в домовых чатах. Их начали использовать для манипулирования жильцами в рамках конкурентной борьбы между управляющими компаниями.
К ноябрю распространилась новая техника обмана — теперь злоумышленники применяют телеграм-ботов, маскирующихся под сервисы оплаты коммунальных услуг. Через такие боты пользователям предлагают «проверить начисления» или «оплатить счёт», фактически направляя данные и деньги преступникам.
Подписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.
Свидетельство о регистрации СМИ ЭЛ № ФС 77 - 68398, выдано федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 27.01.2017 Разрешается частичное использование материалов на других сайтах при наличии ссылки на источник. Использование материалов сайта с полной копией оригинала допускается только с письменного разрешения администрации.