Обнаружена сложная шпионская программа, заражающая жертв через роутеры

Обнаружена сложная шпионская программа, заражающая жертв через роутеры

Обнаружена сложная шпионская программа, заражающая жертв через роутеры

Исследователи «Лаборатории Касперского» обнаружили сложную киберугрозу, которая используется для шпионажа в странах Ближнего Востока и Африки по меньшей мере с 2012 года. Вредонос получил название Slingshot («Рогатка» или «Праща»).

Одна из самых примечательных особенностей Slingshot — необычный вектор атак. Эксперты выяснили, что многие жертвы зловреда были заражены через роутер. В ходе атак группировка, стоящая за Slingshot, взламывает устройство и помещает в него компоненты зловреда, в том числе динамически загружаемую библиотеку ipv4.dll. Когда администратор подключается к роутеру для его настройки или диагностики, прошивка устройства загружает и запускает на компьютере администратора этот модуль, который, в свою очередь, скачивает остальные модули этой вредоносной программы с роутера. Один из этих компонентов может работать в режиме ядра (kernel mode), что даёт ему полный контроль над компьютером жертвы.

Метод взлома самого роутера пока остаётся неясным, возможно, злоумышленники использовали для этого один из известных эксплойтов.

После заражения Slingshot загружает несколько дополнительных модулей, включая два больших и мощных: Cahnadr и GollumApp. Они работают в связке и «помогают» друг другу в сборе информации, защите от обнаружения и фильтрации данных.

Судя по всему, главное предназначение Slingshot — кибершпионаж. Программа собирает и передаёт злоумышленникам скриншоты, вводимые с клавиатуры символы, сетевую информацию, пароли, подключения к USB, данные из буфера обмена и многое другое. Доступ зловреда к ядру означает, что в теории Slingshot может украсть всё что угодно.

Slingshot включает и ряд техник, помогающих ему оставаться незамеченным. Среди них шифрование всех модулей, вызов системных служб напрямую, минуя защитные решения, ряд антиотладочных приёмов, а также гибкие сценарии поведения в зависимости от того, какое защитное решение используется в устройстве.

Образцы вредоносного кода, которые анализировали эксперты, были помечены как «версия 6.x». Судя по этой метке, угроза существует уже довольно давно. Для разработки ПО такой сложности действительно требуется много времени и ресурсов, а также высокий уровень подготовки исполнителей. В совокупности эти улики позволяют сделать вывод, что группировка, стоящая за Slingshot, высокоорганизованна, профессиональна и, возможно, спонсируется государством. Текстовые артефакты в коде говорят о предположительно англоязычном происхождении разработчиков.

На данный момент эксперты обнаружили около 100 жертв Slingshot. Большинство из них расположены в Кении и Йемене, также есть жертвы в Афганистане, Ливии, Конго, Иордании, Турции, Ираке, Судане, Сомали и Танзании. Значительная часть атакованных — физические лица, однако встречаются и государственные органы.

«Slingshot — сложное ПО с очень широким арсеналом инструментов и техник, включая модули, работающие в режиме ядра. До сих пор подобное встречалось только в угрозах самого высокого уровня. Подобный функционал крайне ценен для хакеров. Этим можно объяснить, почему Slingshot существует уже по крайней мере шесть лет», — добавил Алексей Шульмин, старший антивирусный эксперт «Лаборатории Касперского».

BitLocker в Windows 11 ускорили на уровне железа и CPU

Microsoft начала внедрять аппаратное ускорение BitLocker в Windows 11 — решение, которое должно одновременно подтянуть производительность и повысить уровень защиты данных. Напомним, BitLocker — это встроенный в Windows механизм полного шифрования диска.

Обычно он работает так: ключи хранятся в TPM, а все криптографические операции выполняются на уровне процессора.

Раньше этого было достаточно, но с ростом производительности NVMe-накопителей шифрование всё чаще стало заметно «отъедать» ресурсы — особенно в играх, при монтаже видео и в других тяжёлых сценариях.

Теперь Microsoft решила переложить основную нагрузку с CPU на железо. В новой версии BitLocker массовые криптографические операции могут выполняться напрямую на компонентах SoC (System-on-a-Chip) — через аппаратные модули безопасности (HSM) и доверенные среды выполнения (TEE). В результате снижается нагрузка на процессор и ускоряется работа системы в целом.

По данным Microsoft, при аппаратном ускорении BitLocker потребляет примерно на 70% меньше CPU-циклов на операцию ввода-вывода по сравнению с программным вариантом. Конкретные цифры, конечно, зависят от железа, но разница заметная.

 

Есть и бонус по безопасности. Ключи шифрования теперь лучше изолированы от процессора и оперативной памяти, что снижает риски атак на CPU и память. В Microsoft прямо говорят, что в перспективе это позволит полностью убрать BitLocker-ключи из зоны доступа CPU и RAM, оставив их под защитой специализированного «железа» и TPM.

Аппаратно ускоренный BitLocker включается автоматически — при условии, что система его поддерживает. Речь идёт о Windows 11 версии 24H2 (с установленными сентябрьскими обновлениями) и Windows 11 25H2, NVMe-накопителе и процессоре с поддержкой криптографического оффлоада. По умолчанию используется алгоритм XTS-AES-256.

Первыми поддержку получат корпоративные системы Intel vPro на процессорах Intel Core Ultra Series 3 (Panther Lake). В дальнейшем Microsoft обещает добавить и другие SoC-платформы.

Проверить, какой режим BitLocker используется на конкретном устройстве, можно командой manage-bde -status — в параметре Encryption Method будет указано, используется ли аппаратное ускорение.

При этом BitLocker всё ещё может откатиться к программному режиму. Это происходит, если вручную заданы неподдерживаемые алгоритмы или размеры ключей, если так требуют корпоративные политики, либо если включён FIPS-режим, а платформа не поддерживает сертифицированный криптооффлоад.

RSS: Новости на портале Anti-Malware.ru