ИИ от Microsoft появится на процессорах размером с хлебную крошку

ИИ от Microsoft появится на процессорах размером с хлебную крошку

ИИ от Microsoft появится на процессорах размером с хлебную крошку

Библиотека Embedded Learning Library, разработанная Microsoft Research, поможет внедрить системы машинного обученияв компьютеры с крошечными процессорами, такие как Raspberry Pi. Они не будут нуждаться в постоянном подключении к облаку и интернету, сохраняя все свои вычислительные возможности в режиме оф-лайн, также их будет очень сложно взломать. 

Сфера применения подобных устройств очень широка. Например, «умные перчатки», способные распознавать и озвучивать язык жестов, датчики влажности почвы, и даже мозговые импланты, предупреждающие своего носителя о возможных судорогах. Подобные технологии способны перевернуть мир Интернета вещей и найдут применение в самых разных сценариях, например, в предиктивном обслуживании для выявления и устранения поломок еще до их возникновения.

Идея проекта родилась у руководителя направления машинного обучения и оптимизации Microsoft Research Офера Декеля (Ofer Dekel), когда его сад атаковали белки. Будучи специалистом в области ИТ, он решил проблему при помощи технологий. Декель написал алгоритм для распознавания белок и запустил его на Raspberry Pi 3. В итоге он получил систему наблюдения за задним двором, включающую разбрызгиватель при появлении вредителей.

«Каждый, у кого есть желание и Raspberry Pi, может сделать нечто подобное, — говорит г-н Декель. — Раньше одной из главных преград была высокая стоимость и непрактичность устройств для облачной обработки данных. Мы можем наделить большим количеством возможностей меньший по размеру процессор без потери производительности».

Самым маленьким устройством, на котором тестировалась библиотека является одноплатный компьютер Arduino Uno, обладающий 2 килобайтами оперативной памяти. Следующий шаг — написание алгоритма для работы систем машинного обучения на процессорах Cortex M0, размером с крошку хлеба. 

В МФТИ подобрали работающие альтернативы GPU NVIDIA

Институт искусственного интеллекта МФТИ оценил возможности альтернативных графических процессоров (GPU) от китайских производителей. Параллельно в Физтехе был создан Центр компетенций, основной задачей которого стала помощь бизнесу в построении инфраструктуры для работы с искусственным интеллектом.

Российские компании столкнулись с увеличением сроков поставок, ограничениями на загрузку драйверов и отсутствием официальной поддержки оборудования NVIDIA, графические ускорители которой традиционно используются при построении ИИ-инфраструктуры.

В этих условиях бизнесу приходится пересматривать привычные подходы и искать альтернативные технологические решения.

Институт искусственного интеллекта МФТИ провёл комплексное исследование рынка альтернативных ускорителей, преимущественно китайского производства. В рамках работы специалисты изучали архитектурные особенности оборудования, состояние драйверов, совместимость с популярными фреймворками и поведение ускорителей под нагрузкой при выполнении различных задач — от работы с большими языковыми моделями и системами компьютерного зрения до распределённых вычислений.

По итогам испытаний наилучшие результаты показали видеокарты s4000 от Moore Threads и C500 от MetaX. Они продемонстрировали высокую производительность и стабильную работу во всех ключевых сценариях, включая длительную непрерывную нагрузку. В ряде тестов их производительность оказалась сопоставимой с NVIDIA A100, а в отдельных случаях — даже превосходила её.

«Мы оценивали скорость и воспроизводимость вычислений, устойчивость при росте нагрузки и стабильность поведения моделей на разных типах ускорителей. Эти параметры определяют пригодность систем для длительной эксплуатации. По итогам исследований мы сформировали программно-аппаратные конфигурации, обеспечивающие необходимую производительность языковых моделей на альтернативных платформах. Такой подход формирует предсказуемый жизненный цикл ИИ-решений и позволяет компаниям системно планировать эксплуатацию систем в собственных контурах», — рассказал научный директор Института искусственного интеллекта МФТИ Юрий Визильтер.

В МФТИ пообещали продолжить тестирование новых поколений ускорителей, а также подготовку практических рекомендаций по их использованию для решения типовых задач.

RSS: Новости на портале Anti-Malware.ru