ЛК выпустила новую версию решения для защиты от целевых атак

ЛК выпустила новую версию решения для защиты от целевых атак

ЛК выпустила новую версию решения для защиты от целевых атак

«Лаборатория Касперского» объявила о выходе обновленной версии Kaspersky Anti Targeted Attack Platform (KATA). Решение сочетает продвинутые алгоритмы машинного обучения и улучшенную адаптируемость к инфраструктуре клиента.

В комбинации с экспертными сервисами для защиты от киберугроз это позволяет противодействовать даже самым сложным атакам на ранних стадиях. Кроме того, снизились технические требования для интеграции с Kaspersky Private Security Network — локальной репутационной базой, информация из которой не выходит за пределы корпоративной сети.

Новая версия Kaspersky Anti Targeted Attack Platform легко интегрируется с Kaspersky Endpoint Security для бизнеса и позволяет использовать решение для защиты рабочих мест как сенсор. Кроме того, улучшена работа с электронной почтой: новая KATA способна блокировать вредоносные письма и совместима с решением Kaspersky Secure Mail Gateway. Теперь при защите почты обрабатываются не только файлы, но и веб-адреса — они передаются в «песочницу» и проверяются в безопасной среде. Помимо этого, появилась возможность проверять даже защищенные паролем архивы.

Инфраструктура «песочницы» – специально выделенной среды, где имитируется обычная работа на компьютере для проверки поведения в этой среде различных программ, – стала децентрализованной, за счет чего ее можно масштабировать. Это позволяет работать с большим количеством анализируемых объектов даже в загруженных сетях.

Консоль управления Kaspersky Anti Targeted Attack Platform стала более наглядной и понятной для отслеживания всех рабочих потоков. В панели отображается детальная информация о статусе проверок, последних событиях и инцидентах, а также возможных связях между ними. Разным пользователям решения теперь можно давать разный уровень доступа в зависимости от их обязанностей и компетенций. Кроме того, представление информации об определенных частях инфраструктуры может быть ограничено в соответствии с политикой безопасности компании.

«Мы сосредоточились на трех главных направлениях совершенствования продукта. Первое и самое важное — добавили новые сценарии эксплуатации, расширили возможности анализа и автоматизированного поиска взаимосвязей между событиями. Второе — серьезно поработали над масштабируемостью решения, его гибкостью и возможностью адаптироваться к требованиям клиента. Наконец, третье направление — наглядность. Чистый и понятный интерфейс, который можно настроить под себя, жизненно необходим для оперативного обнаружения инцидентов и реагирования на них», — рассказал Артем Серебров, руководитель управления по разработке Kaspersky Anti Targeted Attack Platform «Лаборатории Касперского».

Разработка новосибирских ученых снизит галлюцинации ИИ

В Новосибирском государственном университете разработали библиотеку, которая повышает точность и надёжность ответов нейросетей и помогает снизить количество «выдуманных» или заведомо недостоверных ответов — так называемых ИИ-галлюцинаций. Решение получило название RAGU (Retrieval-Augmented Graph Utility) и основано на использовании графов знаний, отражающих связи между различными элементами информации.

Такие графы помогают нейросетям лучше понимать контекст запросов и выявлять неочевидные зависимости. В рамках проекта они были интегрированы с большими языковыми моделями, что позволило повысить качество генерации ответов.

«Саму концепцию придумали не мы. Архитектура GraphRAG была предложена в статье Microsoft, опубликованной около года назад. Идея оказалась удачной, но мы увидели ряд недостатков — в частности, очень долгий процесс построения графа знаний и недетерминированный результат. Наш подход позволил ускорить работу и повысить её надёжность», — рассказал научный сотрудник лаборатории прикладных цифровых технологий Международного научно-образовательного математического центра НГУ Иван Бондаренко.

В отличие от оригинального подхода Microsoft, новосибирские исследователи применили многошаговый метод формирования графа знаний. Это позволило существенно ускорить процесс и снизить требования к вычислительным ресурсам. Если в исходной реализации использовалось порядка 32 млрд параметров, то в RAGU их число удалось сократить почти на два порядка — не только без потери качества, но и с его заметным улучшением.

Помимо специалистов НГУ, в проекте участвовали представители других российских вузов, включая МГУ, Балтийский федеральный университет имени Иммануила Канта, Университет науки и технологий МИСИС, Дальневосточный федеральный университет и Университет ИТМО.

Проект RAGU стал победителем в номинации «Инновации в области искусственного интеллекта» конкурса «Код без границ». Всего в конкурсе приняли участие более 200 проектов.

RSS: Новости на портале Anti-Malware.ru