«Лаборатория Касперского» сообщает о патентовании прогрессивной технологии защиты от спама

«Лаборатория Касперского» сообщает о патентовании прогрессивной технологии защиты от спама

«Лаборатория Касперского», ведущий производитель систем защиты от вредоносного и нежелательного ПО, хакерских атак и спама, сообщает об успешном патентовании передовой технологии в области борьбы со спамом. Технология, запатентованная в России, обеспечивает быстроту и высокий уровень детектирования нежелательных сообщений в изображениях.

Современные системы фильтрации спама легко детектируют текстовый спам. Поэтому спамеры часто используют метод сокрытия текстов нежелательных сообщений в изображениях. Задача фильтрации графического спама значительно сложнее, чем текстового – в данном случае антиспам-система должна не только установить, является ли текст спамом, но и предварительно зафиксировать наличие самого текста в изображении.

Большинство методов выявления текста в изображениях основаны на машинном распознавании графических образов. Однако качественное машинное распознавание требует единообразия размеров, стилей и расположения считываемых символов. Данное ограничение используется спамерами, которые намеренно искажают и зашумливают изображения в целях затруднения и замедления процесса детектирования текстов.

Передовая технология «Лаборатории Касперского» предназначена для эффективного обнаружения текстов и спама в растровых изображениях без необходимости машинного распознавания графических образов. Такой подход обеспечивает высокую скорость детектирования и позволяет находить тексты практически на любом языке.

Новая антиспам-технология «Лаборатории Касперского» разработана Евгением Смирновым. Выдача патента на неё одобрена Федеральной службой по интеллектуальной собственности, патентам и товарным знакам 13 января 2009 года.

В основе запатентованной технологии лежит вероятностно-статистический метод, согласно которому решение о том, содержит ли изображение текст, принимается на основании характера расположения вероятных графических образов слов и строк, а также содержания в них выявленных образов букв и слов. Наличие специальных фильтров обеспечивает устойчивость системы к шумовым элементам и разбиению текста рамками и линиями, а использование особого способа выявления строк – к таким встречающимся в графическом спаме искажениям, как повороты текста и написание его волной.

Кроме детектирования текста в изображениях, новейшая система способна эффективно определять, является ли обнаруженный текст спамом, сравнивая его сигнатуру с шаблонами спама, хранящимися в базе данных.

«С одной стороны, новый метод неплохо детектирует текст, который может быть написан почти на любом языке, – говорит автор изобретения Евгений Смирнов, руководитель группы развития антиспам-технологий «Лаборатории Касперского». – С другой стороны, мы не пытаемся прочитать текст машинным образом, что позволяет данному методу оставаться достаточно быстрым для возможности его применения в высокопроизводительном антиспам-фильтре «Лаборатории Касперского»».

«Это очень значимое изобретение для антиспам-индустрии, – заявляет руководитель направления патентования «Лаборатории Касперского» Надежда Кащенко. – Следует отметить, что для распознавания спама в виде обычных текстовых сообщений имеется много различных технических решений, а вот для распознавания текстового спама, внедрённого в изображение, решений очень мало и все они слишком сложные, поскольку сначала надо обнаружить наличие текста в изображении, а потом уже определить, относится ли этот текст к спаму. Решение Евгения Смирнова уникальное, отличается новизной и относится к уже новому уровню технологий, что и позволило нам отстоять права на это изобретение и получить патент».

В настоящее время патентные организации США и России рассматривают более трех десятков патентных заявок «Лаборатории Касперского», описывающих уникальные инновационные технологии в области информационной безопасности.

Сегодня технологии «Лаборатории Касперского» используются по лицензии ведущими ИТ-компаниями мира, в том числе Microsoft, Bluecoat, Juniper Networks, Clearswift, Borderware, Checkpoint, Sonicwall, Websense, LanDesk, Alt-N, ZyXEL, ASUS и D-Link.

Для macOS появился первый зловред, написанный с помощью ИИ

Специалисты Mosyle обнаружили необычную и довольно тревожную вредоносную кампанию под macOS. И дело тут не только в том, что речь снова идёт о криптомайнере. По данным исследователей, это первый зафиксированный в «дикой природе» macOS-зловред, в коде которого явно прослеживаются следы генеративного ИИ.

На момент обнаружения вредонос не детектировался ни одним крупным антивирусным движком, что само по себе уже неприятно.

И это особенно интересно на фоне предупреждений Moonlock Lab годичной давности — тогда исследователи писали, что на подпольных форумах активно обсуждают использование LLM для написания macOS-зловредов. Теперь это перестало быть теорией.

Кампанию назвали SimpleStealth. Распространяется она через фейковый сайт, маскирующийся под популярное ИИ-приложение Grok. Злоумышленники зарегистрировали домен-двойник и предлагают скачать «официальный» установщик для macOS.

После запуска пользователь действительно видит полноценное приложение, которое выглядит и ведёт себя как настоящий Grok. Это классический приём: фейковая оболочка отвлекает внимание, пока вредонос спокойно работает в фоне и остаётся незамеченным как можно дольше.

При первом запуске SimpleStealth аккуратно обходит защитные функции системы. Приложение просит ввести пароль администратора — якобы для завершения настройки. На самом деле это позволяет снять карантинные ограничения macOS и подготовить запуск основной нагрузки.

С точки зрения пользователя всё выглядит нормально: интерфейс показывает привычный ИИ-контент, ничего подозрительного не происходит.

А внутри — криптомайнер Monero (XMR), который позиционируется как «конфиденциальный и неотслеживаемый». Он работает максимально осторожно:

  • запускается только если macOS-устройство бездействует больше минуты;
  • мгновенно останавливается при движении мыши или вводе с клавиатуры;
  • маскируется под системные процессы вроде kernel_task и launchd.

В итоге пользователь может долго не замечать ни повышенной нагрузки, ни утечки ресурсов.

Самая интересная деталь — код зловреда. По данным Mosyle, он буквально кричит о своём ИИ-происхождении: чрезмерно подробные комментарии, повторяющаяся логика, смесь английского и португальского — всё это типичные признаки генерации с помощью LLM.

Именно этот момент делает историю особенно тревожной. ИИ резко снижает порог входа для киберпреступников. Если раньше создание подобного зловреда требовало серьёзной квалификации, теперь достаточно интернета и правильно сформулированных запросов.

Рекомендация здесь стара как мир, но по-прежнему актуальна: не устанавливайте приложения с сомнительных сайтов. Загружайте софт только из App Store или с официальных страниц разработчиков, которым вы действительно доверяете.

Индикаторы компрометации приводим ниже:

Семейство вредоносов: SimpleStealth

Имя распространяемого файла: Grok.dmg

Целевая система: macOS

Связанный домен: xaillc[.]com

Адрес кошелька:

4AcczC58XW7BvJoDq8NCG1esaMJMWjA1S2eAcg1moJvmPWhU1PQ6ZYWbPk3iMsZSqigqVNQ3cWR8MQ43xwfV2gwFA6GofS3

Хеши SHA-256:

  • 553ee94cf9a0acbe806580baaeaf9dea3be18365aa03775d1e263484a03f7b3e (Grok.dmg)
  • e379ee007fc77296c9ad75769fd01ca77b1a5026b82400dbe7bfc8469b42d9c5 (Grok wrapper)
  • 2adac881218faa21638b9d5ccc05e41c0c8f2635149c90a0e7c5650a4242260b (grok_main.py)
  • 688ad7cc98cf6e4896b3e8f21794e33ee3e2077c4185bb86fcd48b63ec39771e (idle_monitor.py)
  • 7813a8865cf09d34408d2d8c58452dbf4f550476c6051d3e85d516e507510aa0 (working_stealth_miner.py)

RSS: Новости на портале Anti-Malware.ru