«Лаборатория Касперского» сообщает о патентовании прогрессивной технологии защиты от спама

«Лаборатория Касперского» сообщает о патентовании прогрессивной технологии защиты от спама

«Лаборатория Касперского», ведущий производитель систем защиты от вредоносного и нежелательного ПО, хакерских атак и спама, сообщает об успешном патентовании передовой технологии в области борьбы со спамом. Технология, запатентованная в России, обеспечивает быстроту и высокий уровень детектирования нежелательных сообщений в изображениях.

Современные системы фильтрации спама легко детектируют текстовый спам. Поэтому спамеры часто используют метод сокрытия текстов нежелательных сообщений в изображениях. Задача фильтрации графического спама значительно сложнее, чем текстового – в данном случае антиспам-система должна не только установить, является ли текст спамом, но и предварительно зафиксировать наличие самого текста в изображении.

Большинство методов выявления текста в изображениях основаны на машинном распознавании графических образов. Однако качественное машинное распознавание требует единообразия размеров, стилей и расположения считываемых символов. Данное ограничение используется спамерами, которые намеренно искажают и зашумливают изображения в целях затруднения и замедления процесса детектирования текстов.

Передовая технология «Лаборатории Касперского» предназначена для эффективного обнаружения текстов и спама в растровых изображениях без необходимости машинного распознавания графических образов. Такой подход обеспечивает высокую скорость детектирования и позволяет находить тексты практически на любом языке.

Новая антиспам-технология «Лаборатории Касперского» разработана Евгением Смирновым. Выдача патента на неё одобрена Федеральной службой по интеллектуальной собственности, патентам и товарным знакам 13 января 2009 года.

В основе запатентованной технологии лежит вероятностно-статистический метод, согласно которому решение о том, содержит ли изображение текст, принимается на основании характера расположения вероятных графических образов слов и строк, а также содержания в них выявленных образов букв и слов. Наличие специальных фильтров обеспечивает устойчивость системы к шумовым элементам и разбиению текста рамками и линиями, а использование особого способа выявления строк – к таким встречающимся в графическом спаме искажениям, как повороты текста и написание его волной.

Кроме детектирования текста в изображениях, новейшая система способна эффективно определять, является ли обнаруженный текст спамом, сравнивая его сигнатуру с шаблонами спама, хранящимися в базе данных.

«С одной стороны, новый метод неплохо детектирует текст, который может быть написан почти на любом языке, – говорит автор изобретения Евгений Смирнов, руководитель группы развития антиспам-технологий «Лаборатории Касперского». – С другой стороны, мы не пытаемся прочитать текст машинным образом, что позволяет данному методу оставаться достаточно быстрым для возможности его применения в высокопроизводительном антиспам-фильтре «Лаборатории Касперского»».

«Это очень значимое изобретение для антиспам-индустрии, – заявляет руководитель направления патентования «Лаборатории Касперского» Надежда Кащенко. – Следует отметить, что для распознавания спама в виде обычных текстовых сообщений имеется много различных технических решений, а вот для распознавания текстового спама, внедрённого в изображение, решений очень мало и все они слишком сложные, поскольку сначала надо обнаружить наличие текста в изображении, а потом уже определить, относится ли этот текст к спаму. Решение Евгения Смирнова уникальное, отличается новизной и относится к уже новому уровню технологий, что и позволило нам отстоять права на это изобретение и получить патент».

В настоящее время патентные организации США и России рассматривают более трех десятков патентных заявок «Лаборатории Касперского», описывающих уникальные инновационные технологии в области информационной безопасности.

Сегодня технологии «Лаборатории Касперского» используются по лицензии ведущими ИТ-компаниями мира, в том числе Microsoft, Bluecoat, Juniper Networks, Clearswift, Borderware, Checkpoint, Sonicwall, Websense, LanDesk, Alt-N, ZyXEL, ASUS и D-Link.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

Протекторы скрывают около 40% уязвимостей в Android-приложениях

Специалисты Positive Technologies провели исследование и выяснили, насколько протекторы помогают скрывать уязвимости и защитные механизмы в Android-приложениях. Для анализа использовали собственный сервис защиты от реверс-инжиниринга, который позволил оценить, как меняется доступность кода для анализа злоумышленниками.

Android остаётся самой распространённой мобильной платформой в мире — ей пользуются около 75% рынка, по данным Statcounter.

Открытость системы и свободный доступ к APK-файлам упрощают реверс-инжиниринг: раскрытие логики работы приложений, поиск ошибок, копирование функциональности и извлечение чувствительных данных.

В исследуемых приложениях специалисты обнаружили более 50 потенциальных уязвимостей разного уровня риска. После применения протектора количество обнаруживаемых ошибок снизилось примерно на 40%.

Наиболее заметное уменьшение пришлось на уязвимости высокого уровня риска — минус 67%. Уязвимостей со средним уровнем риска стало меньше на четверть, а дефектов, которые могли косвенно повлиять на безопасность, — почти на 80%.

Результат оказался разным для разных категорий приложений. Лидером по снижению числа видимых уязвимостей стали сервисы доставки еды — минус 46%. Далее идут приложения для путешествий и транспорта, а также маркетплейсы — по 38%. Примерно треть уязвимостей удалось скрыть в приложениях из сфер развлечений, телекоммуникаций, финансов и платежей.

Интересный эффект наблюдался и в области скрытия защитных техник. После применения протектора количество «видимых» мер безопасности, которые можно обнаружить с помощью сканера, сократилось на 67%. Это означает, что защитные механизмы стало сложнее распознать, а значит — сложнее заранее подготовить способы их обхода.

Также уменьшилось количество обнаруживаемых ключей доступа, токенов и других чувствительных данных — в среднем на 71%. Максимальный эффект наблюдался у приложений категории «Инструменты и утилиты».

По результатам анализа, использование техник защиты от запуска в виртуальных машинах оказалось скрыто в 98% случаев. Механизмы защиты от отладки — в 91%.

Для обфускации и защит от дизассемблирования снижение заметности было менее выраженным, на 32% и 21% соответственно.

Исследование показывает, что даже когда разработчики внедряют защитные механизмы, они могут быть распознаны при статическом анализе. Протекторы позволяют скрыть детали реализации и усложнить злоумышленникам задачу по изучению внутренней логики приложений.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru