Выявлена порция уязвимых SSH-ключей доступа к GitHub

Выявлена порция уязвимых SSH-ключей доступа к GitHub

Бен Кох (Ben Cox), инженер из компании CloudFlare, опубликовал результаты исследования надёжности SSH-ключей, используемых пользователями GitHub. Оценив 1.3 млн публичных ключей, которые размещены в открытом доступе и ассоциированы с аккаунтами GitHub, было выявлено, что до сих пор многие пользователи применяют ключи, сгенерированные в окружении Debian, содержащем пакет OpenSSL с неисправленной уязвимостью, в которой разработчики Debian комментированием двух строк кода поломали генератор случайных чисел.

Уязвимость даёт возможность предсказывать значение генератора случайных чисел и, соответственно, легко подбирать приватные ключи на основе публичных SSH-ключей (уязвимый OpenSSL позволяет генерировать только 32 тыс. вариантов ключей). Ошибка была внесена в 2006 году и устранена в мае 2008 года. Число пользователей GitHub с уязвимым SSH-ключом оказалось достаточно велико. Например, проблемные ключи были выявлены у разработчиков, имеющих право коммита в репозитории компаний Яндекс, Couchbase и Spotify, в проекты gov.uk, в кодовую базу Python, фреймворк Django и ruby gem. В настоящее время, GitHub уже отправил уведомления подверженным проблеме пользователям и заблокировал проблемные ключи, передает opennet.ru.

Кроме ключей, связанных с уязвимостью в OpenSSL, было выявлено несколько ключей подозрительно небольшого размера - семь ключей по 512 бит и два ключа по 256 бит. Подобный размер позволяет достаточно быстро выполнить подбор приватного ключа, например, на компьютере с процессором i5-2400 на подбор 512-битного ключа было потрачено менее трёх дней, а 256-битного - 25 минут. 

ИИ учится задавать вопросы сам себе — и от этого становится умнее

Даже самые продвинутые ИИ-модели пока что во многом лишь повторяют — учатся на примерах человеческой работы или решают задачи, которые им заранее придумали люди. Но что если искусственный интеллект сможет учиться почти как человек — сам задавать себе интересные вопросы и искать на них ответы?

Похоже, это уже не фантазия. Исследователи из Университета Цинхуа, Пекинского института общего искусственного интеллекта (BIGAI) и Университета штата Пенсильвания показали, что ИИ способен осваивать рассуждение и программирование через своеобразную «игру с самим собой».

Проект получил название Absolute Zero Reasoner (AZR). Его идея проста и изящна одновременно. Сначала языковая модель сама придумывает задачи по программированию на Python — достаточно сложные, но решаемые. Затем она же пытается их решить, после чего проверяет себя самым честным способом: запускает код.

 

Если решение сработало — отлично. Если нет — ошибка становится сигналом для обучения. На основе успехов и провалов система дообучает исходную модель, постепенно улучшая и умение формулировать задачи, и способность их решать.

Исследователи протестировали подход на открытой языковой модели Qwen с 7 и 14 миллиардами параметров. Оказалось, что такой «самообучающийся» ИИ заметно улучшает навыки программирования и логического мышления — и в некоторых тестах даже обгоняет модели, обученные на вручную отобранных человеческих данных.

 

По словам аспиранта Университета Цинхуа Эндрю Чжао, одного из авторов идеи, подход напоминает реальный процесс обучения человека:

«Сначала ты копируешь родителей и учителей, но потом начинаешь задавать собственные вопросы. И в какой-то момент можешь превзойти тех, кто тебя учил».

Идея «самоигры» для ИИ обсуждается не первый год — ещё раньше её развивали такие исследователи, как Юрген Шмидхубер и Пьер-Ив Удейер. Но в Absolute Zero особенно интересно то, как растёт сложность задач: чем умнее становится модель, тем более сложные вопросы она начинает ставить перед собой.

«Уровень сложности растёт вместе с возможностями модели», — отмечает исследователь BIGAI Цзилун Чжэн.

Сейчас подход работает только там, где результат можно легко проверить — в программировании и математике. Но в будущем его хотят применить и к более «жизненным» задачам: работе ИИ-агентов в браузере, офисных сценариях или автоматизации процессов. В таких случаях модель могла бы сама оценивать, правильно ли агент действует.

«В теории это может стать путём к суперинтеллекту», — признаёт Чжэн.

RSS: Новости на портале Anti-Malware.ru