Российские компании теряют до $30 млн из-за утечек данных

Российские компании теряют до $30 млн из-за утечек данных

Более 90% компаний сталкиваются с крупными утечками данных, приводящими к серьёзным финансовым проблемам вплоть до банкротства — такие выводы Zecurion Analytics сделал на основании опроса, проведённого среди компаний, использующих системы защиты информации от утечек.

Инфографика Zecurion Analytics: российские компании теряют до 30 000 000 долларов США. DLP-системы помогут

 

Аналитики Zecurion провели более 100 интервью с топ-менеджерами компаний и специалистами по кибербезопасности и изучили реальные случаи выявления преднамеренных и случайных утечек корпоративной информации. Выяснилось, что лишь 8% организаций не страдают от утечек данных, а в 30% компаний крупного и среднего бизнеса фиксируют в среднем по две попытки в месяц похитить ценную информацию, потеря которой сказывается на финансовой стабильности компании. Это подтверждает и максимальный размер ущерба в $30 млн, который понесла российская компания от утечки конфиденциальных данных.

Большая часть компаний несёт косвенные убытки вследствие кражи сотрудниками клиентской базы. В случаях выявления кражи и незаконного использования коммерческой информации сотрудниками 9% компаний увольняет инсайдеров и лишь 2% привлекает их к уголовной или административной ответственности. Если в действиях сотрудника отсутствует злой умысел, в большинстве случаев (61%) всё заканчивается разъяснительными беседами. При серьёзных последствиях непреднамеренных утечек 17% работодателей прибегают к официальным выговорам и штрафам.

Авторы исследования попросили респондентов привести цифры возможных и реальных издержек от утечек данных. В среднем финансовый ущерб в организациях составил $820 тыс. от каждой реальной утечки, в то время как прогнозируемый оказался в 2,5 раза меньше (в среднем $310 тыс.). Такие разные показатели указывают на недостаток организационной работы в части классификации информации и оценки информационных рисков.

«Результаты исследования приятно удивили. При фактически полном отсутствии серьёзной ответственности за утечки как компаний, так и самих инсайдеров большая часть организаций просчитывает риски и убытки и инвестирует в защиту своей информации и персональных данных, — говорит Владимир Ульянов, руководитель Zecurion Analytics. — Это трудно ощутить простым людям, так как в России не принято сообщать об утечках в СМИ и даже своим клиентам, партнёрам или сотрудникам, однако инцидентов с утечками становится всё меньше, и это не может не радовать».

ИИ научился выявлять депрессию по голосовым сообщениям в WhatsApp

Учёные показали, что депрессию можно распознать буквально «по голосу» — и для этого не нужны ни долгие опросники, ни визит к врачу. Достаточно короткого голосового сообщения в WhatsApp (принадлежит Meta, признанной экстремистской и запрещенной в России).

Исследователи из Медицинской школы Санта-Каса-де-Сан-Паулу и компании Infinity Doctors разработали медицинскую языковую модель, которая с высокой точностью определяет наличие депрессивного расстройства по аудиосообщениям.

Результаты работы опубликованы 21 января 2026 года в открытом журнале PLOS Mental Health.

В эксперименте модель анализировала короткие голосовые сообщения, где участники просто рассказывали, как прошла их неделя. И результат оказался неожиданным: у женщин с диагностированной депрессией точность распознавания превысила 91%.

Это один из лучших показателей среди подобных исследований, особенно с учётом того, что речь идёт о бытовых сообщениях, а не специально записанных медицинских интервью.

Для обучения и тестирования использовались два набора данных с WhatsApp-аудио от носителей португальского. В них вошли записи пациентов с подтверждённым диагнозом «большое депрессивное расстройство» и контрольной группы без депрессии.

Часть сообщений была максимально простой — участникам предлагали досчитать от одного до десяти, другая часть — более естественной: свободный рассказ о прошедшей неделе.

Лучше всего модель справлялась именно со «спонтанной речью». У мужчин точность в этом же сценарии оказалась ниже — около 75%, что авторы связывают с меньшим числом мужских голосов в обучающей выборке и возможными различиями в речевых паттернах. При анализе простого счёта до десяти разница между полами почти исчезала: точность составляла около 80% у женщин и чуть меньше у мужчин.

По словам авторов, модель улавливает тонкие акустические признаки — темп речи, интонации, паузы, — которые сложно заметить человеку, но хорошо видит машинное обучение. И главное — всё это происходит в привычном для людей формате повседневного общения.

Исследователи считают, что при дальнейшем развитии технология может лечь в основу недорогих и удобных инструментов раннего скрининга депрессии, не требующих сложных процедур и не нарушающих повседневные привычки пользователей.

Как отметил старший автор исследования Лукас Маркес, «незаметные акустические особенности обычных голосовых сообщений могут с неожиданной точностью указывать на депрессивные состояния».

Напомним, в недавнем исследовании метаданные WhatsApp показали: мы плохо понимаем, как ведём себя в чатах.

RSS: Новости на портале Anti-Malware.ru