Поддельный пакет для WhatsApp из NPM сливает сообщения и контакты

Поддельный пакет для WhatsApp из NPM сливает сообщения и контакты

Поддельный пакет для WhatsApp из NPM сливает сообщения и контакты

В экосистеме JavaScript обнаружили очередную, но особенно неприятную атаку на цепочку поставок. В каталоге NPM более полугода распространялся вредоносный пакет lotusbail, который выдавал себя за библиотеку для работы с WhatsApp API (принадлежит признанной в России экстремистской организации и запрещённой корпорации Meta) — и при этом тихо воровал переписку, контакты и учётные данные пользователей.

На находку обратили внимание исследователи из Koi Security, опубликовав подробный технический разбор. К моменту обнаружения пакет успели скачать более 56 тысяч раз, что делает ситуацию далеко не нишевой.

В отличие от многих зловредов в NPM, которые ломаются или выдают себя странным поведением, lotusbail был практически идеальной подделкой. Его авторы просто склонировали популярную библиотеку @whiskeysockets/baileys, которая используется для работы с WhatsApp Web через WebSocket, и аккуратно встроили в неё вредоносный код.

 

Снаружи всё выглядело легитимно: приложения на базе lotusbail спокойно отправляли и получали сообщения. Но параллельно библиотека:

  • перехватывала все входящие и исходящие сообщения;
  • собирала медиафайлы;
  • вытаскивала списки контактов с номерами телефонов;
  • сохраняла WhatsApp-сессии, токены и коды привязки устройств.

 

Причём перехватывались не только новые сообщения, но и исторические данные, доступные через API.

Самая опасная часть — использование механизма «сопряжение устройств» в WhatsApp. В коде пакета был зашит жёстко заданный, зашифрованный AES код привязки, который незаметно подключал устройство злоумышленника к аккаунту жертвы.

 

В результате атакующий получал постоянный доступ к WhatsApp-аккаунту, который сохранялся даже после удаления вредоносного пакета из проекта.

Проще говоря, удалить lotusbail недостаточно. Чтобы полностью закрыть дыру, жертве нужно вручную отвязать все устройства в настройках WhatsApp.

Собранные данные дополнительно шифровались с помощью кастомной реализации RSA. Это не имело отношения к сквозному шифрованию WhatsApp — цель была другой: спрятать утечки от систем мониторинга и сетевых средств защиты.

Эксперты отмечают, что атака отлично иллюстрирует главную проблему экосистемы open source: функциональность маскирует вредоносную логику. NPM остаётся одной из самых привлекательных целей для атак на цепочки поставок — из-за масштаба, доверия разработчиков и низкого порога публикации пакетов.

Ранее в новом докладе властей Великобритании прозвучала мысль, что разработка зашифрованных мессенджеров вроде WhatsApp теоретически может считаться «враждебной деятельностью».

Более трех четвертей россиян не отличают нейросетевой контент от реального

Согласно исследованию агентств Spektr и СКОТЧ, 77% участников не смогли отличить изображения, созданные нейросетями, от реальных фотографий. В опросе приняли участие около 1000 человек. Респондентам в случайном порядке показывали пять изображений, из которых четыре были сгенерированы ИИ, а одно — подлинное.

Результаты исследования приводит РБК. Корректно определить сгенерированные изображения смогли лишь 23% опрошенных.

При этом в более молодых возрастных группах показатели оказались выше. Среди респондентов до 30 лет правильный ответ дали 30%, в группе 31–44 года — 25%.

В числе признаков «настоящего» фото участники называли убедительные детали, реалистичные свет и тени, а также естественную улыбку человека в кадре. Например, изображение с улыбающимся мужчиной чаще других считали реальным участники в возрасте 45–60 лет — 28% из них выбрали именно этот вариант.

Примечательно, что доля тех, кто ошибается при определении ИИ-контента, растёт. Согласно результатам исследования MWS, опубликованным летом 2025 года, правильно распознать сгенерированные изображения смогли более трети респондентов.

RSS: Новости на портале Anti-Malware.ru