Российские учёные научили ИИ ловить фейковые фото и нелепые изображения

Российские учёные научили ИИ ловить фейковые фото и нелепые изображения

Российские учёные научили ИИ ловить фейковые фото и нелепые изображения

Исследователи из AIRI, Сколтеха, MWS AI и МФТИ по-новому решили одну из наиболее сложных задач компьютерного зрения — выявление изображений с нелогичным содержанием, вроде рыцаря с мобильником или пингвина на велосипеде.

Разработанный ими метод TLG (Through the Looking Glass, «В Зазеркалье») использует ИИ для создания текстовых описаний картинок и обнаружения противоречий при сопоставлении с визуальным содержанием.

В комментарии для «Известий» один из соавторов проекта, доктор компьютерных наук Александр Панченко пояснил: существующие ИИ-модели хорошо распознают элементы картинок, но плохо улавливают контекст — далеко не всегда понимают совместимость представленных объектов с точки зрения здравого смысла.

Чтобы проверить действенность своего подхода, экспериментаторы создали датасет, включив него 824 изображения с нелепыми ситуациями. Тестирование алгоритма показало точность распознавания до 87,5%, что на 0,5-15% выше показателей других существующих моделей, а также большую экономию вычислительных ресурсов.

Новаторская разработка, по словам Панченко, способна повысить надежность систем компьютерного зрения. После доработки и дообучения ее также можно будет использовать для модерации контента — к примеру, для выявления фейковых фото.

В Intel TDX обнаружены уязвимости с риском утечки данных

Intel вместе с Google провела масштабный аудит технологии Trust Domain Extensions (TDX), процессе которого обнаружилось немало проблем. За пять месяцев работы специалисты выявили пять уязвимостей, а также 35 багов и потенциальных слабых мест в коде.

TDX — это аппаратная технология «конфиденциальных вычислений». Она предназначена для защиты виртуальных машин в облаке даже в том случае, если гипервизор скомпрометирован или кто-то из администраторов действует недобросовестно.

По сути, TDX создаёт изолированные «доверенные домены» (Trust Domains), которые должны гарантировать конфиденциальность и целостность данных.

Проверкой занимались исследователи Google Cloud Security и команда Intel INT31. Они анализировали код TDX Module 1.5 — ключевого компонента, отвечающего за работу механизма на высоком уровне. В ход пошли ручной аудит, собственные инструменты и даже ИИ.

В результате обнаружены пять уязвимостей (CVE-2025-32007, CVE-2025-27940, CVE-2025-30513, CVE-2025-27572 и CVE-2025-32467). Их можно было использовать для повышения привилегий и раскрытия информации. Intel уже выпустила патчи и опубликовала официальное уведомление.

Самой серьёзной Google называет CVE-2025-30513. Она позволяла злоумышленнику фактически обойти механизмы безопасности TDX. Речь идёт о сценарии, при котором во время миграции виртуальной машины можно было изменить её атрибуты и перевести её в режим отладки.

Это открывало доступ к расшифрованному состоянию виртуальной машины, включая конфиденциальные данные. Причём атаку можно было провести уже после процедуры аттестации, когда в системе гарантированно присутствуют важные материалы.

Google опубликовала подробный технический отчёт (PDF) объёмом 85 страниц, а Intel — более краткое описание результатов совместной работы.

RSS: Новости на портале Anti-Malware.ru