Российские учёные ускорили обучение нейросетей в распределённых системах

Российские учёные ускорили обучение нейросетей в распределённых системах

Российские учёные ускорили обучение нейросетей в распределённых системах

Российские исследователи из Центра практического искусственного интеллекта Сбербанка и МФТИ предложили метод, который помогает снизить нагрузку на вычислительные ресурсы и ускорить обучение нейросетей в распределённых системах. Работа «Ускоренные методы со сжатыми коммуникациями для гомогенных задач распределённой оптимизации» будет представлена на международной конференции AAAI’25.

Сейчас крупные нейросети содержат миллиарды параметров, и для их обучения часто используют распределённые системы: данные разделяют между тысячами машин.

Однако в таких условиях значительная часть времени уходит на обмен информацией между устройствами, и при неэффективной передаче данных обучение может идти медленнее, чем в централизованном варианте.

Предложенный метод уменьшает количество обменов данными между устройствами, используя гомогенность локальных выборок и сжатие передаваемой информации. Это позволяет синхронизироваться реже и пересылать меньше данных без потери качества модели. Такой подход особенно полезен, если пропускная способность сети ограничена, а задержки мешают быстрому обучению.

По словам Глеба Гусева, директора Центра практического искусственного интеллекта Сбербанка, ключевая задача разработки — снизить коммуникационные издержки. Использование похожести данных и методов сжатия даёт возможность ускорить обучение и уменьшить энергозатраты.

Александр Безносиков, доцент МФТИ, отметил, что в алгоритме объединили ускорение, сжатие и учёт схожести данных. Это позволило добиться рекордно низкой коммуникационной сложности и при правильных настройках значительно сократить время обучения без потери точности — что важно для внедрения ИИ в системах с ограниченными ресурсами, включая сети с edge-устройствами.

Злоумышленники научились использовать умные кормушки для слежки

Злоумышленники могут использовать взломанные умные кормушки для животных для слежки за владельцами. Для получения информации применяются встроенные в устройства микрофоны и видеокамеры. Получив несанкционированный доступ, атакующие способны наблюдать за происходящим в помещении и перехватывать данные.

Об использовании таких устройств в криминальных целях рассказал агентству «Прайм» эксперт Kaspersky ICS CERT Владимир Дащенко.

«Это уже не гипотетическая угроза: известны случаи взлома домашних камер, видеонянь, кормушек для животных и других умных приборов», — предупреждает эксперт.

По словам Владимира Дащенко, вопросам кибербезопасности таких устройств часто не уделяется должного внимания. Между тем любое оборудование с доступом в интернет может стать точкой входа для злоумышленников.

Скомпрометированные устройства могут использоваться и для атак на другие элементы домашней сети — например, смартфоны или компьютеры. Кроме того, они способны становиться частью ботнетов, применяемых для DDoS-атак или майнинга криптовалют. На подобные риски почти год назад обращало внимание МВД России.

Среди признаков возможной компрометации умных устройств эксперт называет самопроизвольные отключения, резкие изменения сетевой активности, появление сообщений об ошибках или другие нетипичные события.

RSS: Новости на портале Anti-Malware.ru