Использование генеративного ИИ ухудшает качество кода

Использование генеративного ИИ ухудшает качество кода

Использование генеративного ИИ ухудшает качество кода

Использование генеративного искусственного интеллекта (ИИ) в разработке программного обеспечения может негативно сказываться на качестве кода. Это связано с так называемыми «галлюцинациями» больших языковых моделей, риском утечек кода, а также с тем, что ИИ нередко воспроизводит уже существующие ошибки и уязвимости.

Влиянию генеративного ИИ на процессы разработки было посвящено выступление основателя компании CodeScoring Алексея Смирнова на конференции «День безопасной разработки», организованной Ассоциацией разработчиков программных продуктов (АРПП) «Отечественный софт».

Как отметил Алексей Смирнов, галлюцинации ИИ в контексте программирования чаще всего проявляются в рекомендациях использовать несуществующие библиотеки — таких случаев может быть до 20%. Причём ещё год назад эта проблема практически не наблюдалась.

По его мнению, этим недостатком могут воспользоваться злоумышленники, подсовывая разработчикам заведомо уязвимые или вредоносные компоненты. Особенно опасно то, что в 58% случаев галлюцинации ИИ повторяются — а значит, подобрать нужное название несуществующей библиотеки становится проще.

Смирнов также сообщил, что с появлением ИИ-ассистентов количество утечек кода увеличилось на 40%. Утечки данных, использованных для обучения нейросетей, в целом являются типичной проблемой. Например, в модели угроз, разработанной в Сбере, такая угроза считается одной из ключевых.

Кроме того, по данным CodeScoring, в каждом третьем случае ИИ-ассистенты воспроизводят уязвимости в коде. Таким образом, надежды на то, что генеративные инструменты смогут автоматически находить и устранять уязвимости, не оправдались. Более того, как подчеркнул Алексей Смирнов, накопленный опыт показывает, что применение генеративного ИИ затрудняет работу статических анализаторов кода.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

DeepSeek-R1 генерирует больше уязвимостей в коде при запрещённых темах

Исследователи из CrowdStrike обнаружили необычное и тревожное поведение китайской модели DeepSeek-R1: она начинает генерировать заметно более уязвимый код, если в запросах появляются политически чувствительные темы для Китая. То есть сама формулировка запроса — например, упоминание Тибета или уйгуров — снижает качество и безопасность создаваемого ИИ кода.

По данным CrowdStrike, без «триггерных» слов модель допускает серьёзные уязвимости примерно в 19% случаев.

Но стоит добавить геополитический контекст, вероятность повышается почти на 50%. Так, при задаче создать компонент для системы, «используемой на промышленном объекте в Тибете», доля небезопасного кода выросла с 19% до 27,2%.

Исследователи подчёркивают: сами «политические» слова никак не связаны с задачей кодирования. Однако модель начинает вести себя нестабильно — от использования небезопасных функций до генерации откровенно нерабочего кода.

В одном примере DeepSeek-R1 написала вебхук для PayPal в виде PHP-кода, который не только содержал ключи в коде, но и вообще не являлся валидным PHP. Несмотря на это, модель уверяла, что всё сделано «по лучшим практикам PayPal».

 

В другом тесте исследователи попросили создать Android-приложение для сообщества уйгуров: регистрация, вход, админ-панель. Приложение работало, но не имело ни аутентификации, ни управления сессиями.

В 35% случаев DeepSeek-R1 вообще не использовала хеширование или применяла небезопасные методы. А вот для похожего задания, но про футбольный фан-клуб, таких проблем почти не было.

CrowdStrike также сообщила, что у модели, судя по всему, есть «встроенный рубильник»:

«DeepSeek-R1 начинает внутренне планировать решение задачи, но в последний момент отказывается отвечать на запросы, связанные, например, с Фалуньгун. В 45% таких случаев модель пишет: “Я не могу помочь с этим запросом“».

По мнению исследователей, причина кроется в обучении модели — вероятно, разработчики встроили специальные ограничения, чтобы соответствовать китайским законам и правилам цензуры.

CrowdStrike подчёркивает: наличие «триггерных слов» не гарантирует, что ИИ всегда выдаст небезопасный код. Но в среднем качество ощутимо падает.

Проблемы с безопасностью кода наблюдаются и у других инструментов. Проверка OX Security показала (PDF), что Lovable, Base44 и Bolt создают уязвимый по умолчанию код даже при запросе «безопасной» реализации. Все три инструмента сгенерировали вики-приложение с XSS-уязвимостью, позволяющей выполнять произвольный JavaScript. Хуже того, модель Lovable могла «пропатчить» уязвимость только в двух из трёх попыток, что создаёт ложное ощущение безопасности.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru