Исследователи показали, как управлять «мыслями» ИИ на лету

Исследователи показали, как управлять «мыслями» ИИ на лету

Исследователи показали, как управлять «мыслями» ИИ на лету

Команда из T-Bank AI Research предложила новый подход к интерпретации и управлению большими языковыми моделями — вроде тех, что лежат в основе современных чат-ботов. Разработку представили на международной конференции ICML в Ванкувере, одном из крупнейших событий в области машинного обучения.

Речь идёт о модифицированном методе SAE Match, который позволяет не просто наблюдать за тем, как модель обрабатывает информацию, но и влиять на это поведение без переобучения или вмешательства в архитектуру.

Что нового?

Вместо того чтобы просто смотреть, какие признаки активируются в слоях модели, исследователи научились строить граф потока признаков. Он показывает, как определённые смысловые элементы (например, тема или стиль ответа) зарождаются и проходят через внутренние механизмы модели — от attention до feedforward.

Самое интересное — теперь можно точечно усиливать или подавлять эти элементы. Например, изменить тональность текста или убрать нежелательную тему. Причём это делается не путём настройки модели заново, а с помощью управления внутренними активностями на нужных этапах.

Почему это важно?

  • Можно контролировать поведение модели более точно, если воздействовать сразу на несколько уровней обработки.
  • Не нужны дополнительные данные или переобучение, метод работает с уже обученными моделями.
  • Прозрачность — можно проследить, откуда берётся тот или иной фрагмент текста: из контекста или из внутренних «знаний» модели.
  • Безопасность — если модель сгенерировала что-то нежелательное, теперь можно понять, почему так вышло, и в будущем избежать повторения.

В чём уникальность?

Раньше интерпретация ИИ сводилась к тому, чтобы просто наблюдать, как он работает. Теперь же появляется возможность вмешиваться в процесс генерации — причём быстро и точечно. Это может быть полезно не только в научных задачах, но и в реальных продуктах, где важно избегать неожиданных или опасных ответов от ИИ.

Так что теперь исследователи могут не просто догадываться, что происходит внутри модели, а действительно видеть и управлять этими процессами. И это, по сути, шаг к более контролируемому и предсказуемому искусственному интеллекту.

Linux-ботнет SSHStalker старомоден: C2-коммуникации только по IRC

Специалисты по киберразведке из Flare обнаружили Linux-ботнет, операторы которого отдали предпочтение надежности, а не скрытности. Для наращивания потенциала SSHStalker использует шумные SSH-сканы и 15-летние уязвимости, для C2-связи — IRC.

Новобранец пока просто растет, либо проходит обкатку: боты подключаются к командному серверу и переходят в состояние простоя. Из возможностей монетизации выявлены сбор ключей AWS, сканирование сайтов, криптомайнинг и генерация DDoS-потока.

Первичный доступ к Linux-системам ботоводам обеспечивают автоматизированные SSH-сканы и брутфорс. С этой целью на хосты с открытым портом 22 устанавливается написанный на Go сканер, замаскированный под опенсорсную утилиту Nmap.

В ходе заражения также загружаются GCC для компиляции полезной нагрузки, IRC-боты с вшитыми адресами C2 и два архивных файла, GS и bootbou. Первый обеспечивает оркестрацию, второй — персистентность и непрерывность исполнения (создает cron-задачу на ежеминутный запуск основного процесса бота и перезапускает его в случае завершения).

Чтобы повысить привилегии на скомпрометированном хосте, используются эксплойты ядра, суммарно нацеленные на 16 уязвимостей времен Linux 2.6.x (2009-2010 годы).

 

Владельцы SSHStalker — предположительно выходцы из Румынии, на это указывает ряд найденных артефактов.

Исследователи также обнаружили файл со свежими результатами SSH-сканов (около 7 тыс. прогонов, все за прошлый месяц). Большинство из них ассоциируются с ресурсами Oracle Cloud в США, Евросоюзе и странах Азиатско-Тихоокеанского региона.

RSS: Новости на портале Anti-Malware.ru