Антиплагиат научился выявлять текст, сгенерированный нейросетями

Антиплагиат научился выявлять текст, сгенерированный нейросетями

Антиплагиат научился выявлять текст, сгенерированный нейросетями

Разработчики системы «Антиплагиат» сообщили о достижении 98% точности в определении текстов, созданных с помощью искусственного интеллекта. Это на 35% выше по сравнению с предыдущими версиями. Алгоритм был обучен и протестирован на материалах, сгенерированных нейросетями deepseekV3 и GPT-4o.

Новая модель ориентирована на анализ академических и научных текстов. В процессе обучения использовалась коллекция работ, собранная за 20 лет взаимодействия с российскими вузами.

Это позволило повысить точность в выявлении ИИ-сгенерированного контента в курсовых, дипломных и научных работах.

Согласно исследованию проекта «Я – профессионал», 85% российских студентов регулярно используют нейросети, в основном — для поиска информации. При этом 43% используют ИИ для подготовки рефератов, эссе и других письменных работ, а около четверти — для создания презентаций.

Применение генеративного ИИ вызывает обеспокоенность и в научной среде, в частности из-за проблем с достоверностью, вызванных так называемыми галлюцинациями ИИ.

На фоне этого большинство российских университетов используют системы проверки уникальности текста. В частности, по данным разработчиков, 92% участников государственной программы «Приоритет 2030» применяют «Антиплагиат» в своей работе.

Исполнительный директор компании «Антиплагиат» Евгений Лукьянчиков отметил, что обновление направлено на повышение качества академического письма и соблюдение норм научной этики.

Linux-ботнет SSHStalker старомоден: C2-коммуникации только по IRC

Специалисты по киберразведке из Flare обнаружили Linux-ботнет, операторы которого отдали предпочтение надежности, а не скрытности. Для наращивания потенциала SSHStalker использует шумные SSH-сканы и 15-летние уязвимости, для C2-связи — IRC.

Новобранец пока просто растет, либо проходит обкатку: боты подключаются к командному серверу и переходят в состояние простоя. Из возможностей монетизации выявлены сбор ключей AWS, сканирование сайтов, криптомайнинг и генерация DDoS-потока.

Первичный доступ к Linux-системам ботоводам обеспечивают автоматизированные SSH-сканы и брутфорс. С этой целью на хосты с открытым портом 22 устанавливается написанный на Go сканер, замаскированный под опенсорсную утилиту Nmap.

В ходе заражения также загружаются GCC для компиляции полезной нагрузки, IRC-боты с вшитыми адресами C2 и два архивных файла, GS и bootbou. Первый обеспечивает оркестрацию, второй — персистентность и непрерывность исполнения (создает cron-задачу на ежеминутный запуск основного процесса бота и перезапускает его в случае завершения).

Чтобы повысить привилегии на скомпрометированном хосте, используются эксплойты ядра, суммарно нацеленные на 16 уязвимостей времен Linux 2.6.x (2009-2010 годы).

 

Владельцы SSHStalker — предположительно выходцы из Румынии, на это указывает ряд найденных артефактов.

Исследователи также обнаружили файл со свежими результатами SSH-сканов (около 7 тыс. прогонов, все за прошлый месяц). Большинство из них ассоциируются с ресурсами Oracle Cloud в США, Евросоюзе и странах Азиатско-Тихоокеанского региона.

RSS: Новости на портале Anti-Malware.ru