Критическая уязвимость в DJL грозит атаками через Java-софт с встроенным ИИ

Критическая уязвимость в DJL грозит атаками через Java-софт с встроенным ИИ

Критическая уязвимость в DJL грозит атаками через Java-софт с встроенным ИИ

В Deep Java Library (DJL) объявилась уязвимость, позволяющая провести атаку на Windows, macOS или Linux при загрузке ИИ-модели. Патч уже доступен, пользователям настоятельно рекомендуется обновить библиотеку машинного обучения до версии 0.31.1.

Опенсорсный фреймворк DJL используется разработчиками Java-приложений для интеграции с ИИ. Уязвимости в таких инструментах особенно опасны в условиях общего доступа к ИИ-модели, развернутой в облаке или корпоративной среде.

Проблема CVE-2025-0851 (9,8 балла CVSS) классифицируется как обход каталога, то есть представляет собой возможность записи файлов в произвольное место в системе. В появлении уязвимости повинны утилиты ZipUtils.unzip и TarUtils.untar, используемые для распаковки архивов при загрузке ИИ-моделей.

Злоумышленник может, к примеру, создать в Windows вредоносный архив, и его распаковка на платформе macOS или Linux произойдет вне рабочего каталога. Таким же образом можно провести атаку на Windows, создав архив в macOS/Linux.

Эксплойт позволяет получить удаленный доступ к системе, вставив ключ SSH в файл authorized_keys. Данная уязвимость также провоцирует межсайтовый скриптинг (XSS) через инъекцию HTML-файлов в общедоступную директорию.

Кроме того, высока вероятность атаки на цепочку поставок с целью забэкдоривания корпоративного конвейера ИИ: аналитики данных и исследователи в области ИИ зачастую загружают предобученные модели из внешних источников.

Уязвимости подвержены все выпуски DJL ниже 0.31.1. Данных о злонамеренном использовании CVE-2025-0851 пока нет. Пользователям рекомендуется установить новейшую сборку пакета и загружать архивы ИИ-моделей только из доверенных источников — таких как DJL Model Zoo.

AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

34% тестировщиков применяют ИИ для генерации кода, 28% — для тест-кейсов

2ГИС решила разобраться, как себя чувствует русскоязычное QA-сообщество: чем пользуются тестировщики, как устроены процессы и как в работу проникает искусственный интеллект. В исследовании поучаствовали 570 QA-специалистов, почти половина из них работают в крупных компаниях.

57% опрошенных сказали, что подключаются к разработке фич ещё на этапе обсуждения требований — то есть задолго до появления кода.

Лишь 20% приходят в проект только после завершения разработки. А вариант «подключаюсь, когда в продакшене что-то сломалось» — уже почти экзотика.

89% команд используют автотесты — от юнитов до UI. Но вот инструменты вокруг них, вроде поддержки, аналитики и стабильности, применяют далеко не все. Например, код-ревью автотестов делают только 39% опрошенных, а 28% команд вообще не отслеживают никаких метрик и работают «вслепую».

ИИ используют не все, и в основном — для рутинных задач

Хотя ИИ уже прочно вошёл в мир тестирования, чаще всего его применяют для типовых задач:

  • написание тестового кода (34%),
  • генерация тест-кейсов (28%),
  • и тестовых данных (26%).

 

Более продвинутые сценарии вроде анализа тестов, автоматического поиска багов и визуального тестирования пока используются редко. Например, только 5% автоматизируют дефект-дискавери, и лишь 4% пробуют AI для визуальных проверок. А 22% QA-специалистов вообще не используют ИИ в своей работе.

Главные проблемы в тестировании

На первом месте — сжатые сроки. Об этом сказали 71% участников опроса. На втором — слабое вовлечение QA в процессы (40%) и нехватка квалифицированных специалистов (37%).

Как измеряют качество

  • Главная метрика — количество найденных багов (58%).
  • Покрытие автотестами учитывают 43%, покрытие кода — только 23%.
  • Стабильность тестов (например, чтобы они не «флапали») отслеживают всего 15% команд.

Что будет с профессией дальше? Мнения разделились:

  • 37% считают, что всё уйдёт в тотальную автоматизацию;
  • 35% уверены, что ничего особо не поменяется;
  • почти треть верит, что QA станет глубже интегрироваться в специфические направления вроде ИБ и производительности;
  • 27% видят будущее за DevOps и SRE — то есть тесной работой на всех этапах: от разработки до эксплуатации.
AM LiveПодписывайтесь на канал "AM Live" в Telegram, чтобы первыми узнавать о главных событиях и предстоящих мероприятиях по информационной безопасности.

RSS: Новости на портале Anti-Malware.ru