Продукты Security Vision вошли в реестр российского ПО как использующие ИИ

Продукты Security Vision вошли в реестр российского ПО как использующие ИИ

Продукты Security Vision вошли в реестр российского ПО как использующие ИИ

Целый ряд продуктов на платформе Security Vision успешно прошел экспертную проверку и отмечен в реестре российского ПО как использующий технологии искусственного интеллекта (ИИ).

Искусственный интеллект применяется в следующих средствах защиты информации на платформе Security Vision:

1. Средства управления киберинцидентами

IRP | SOAR | NG SOAR;

2. Средства анализа киберугроз

TIP | UEBA | AD+ML;

3. Средства управления процессами кибербезопасности

GRC | SGRC | Auto-SGRC | Auto-Compliance.

Перечисленные средства защиты позволяют решать следующие задачи:

1) Средства управления киберинцидентами (международная классификация: SOAR | NG SOAR - Security Orchestration, Automation and Response, IRP - Incident Response Platform, SIEM - Security information and event management, AM – Asset Management, CMDB, VM – Vulnerability Management и VS – Vulnerability Scanner) предназначены для централизованной координации и управления (оркестровки) средствами защиты информации, автоматизации всех этапов реагирования на инциденты ИБ (выявление, анализ, локализация, устранение инцидента, восстановление после инцидента, выполнение пост-инцидентных действий), роботизации действий специалистов по реагированию, управления событиями / инцидентами ИБ, активами и уязвимостями, автоматизации обмена информацией с регуляторами (НКЦКИ, ФинЦЕРТ).

2) Средства анализа киберугроз (международная классификация: TIP - Threat Intelligence Platform, UEBA - User and Entity Behavior Analytics, AD+ML – Anomaly Detection with Machine Learning) предназначены для сбора и обработки аналитических данных о киберугрозах (киберразведка), обнаружения киберугроз с применением технологий поведенческого анализа, выявления аномалий и машинного обучения.

3) Средства управления процессами кибербезопасности (международная классификация: SGRC - Security Governance, Risk Management and Compliance; GRC - Governance, Risk Management and Compliance) предназначены для автоматизации управления кибербезопасностью (CM – Compliance Management, BCP – Business Continuity Plan, Audit), рисками (кибербезопасности RM – Risk Management, операционными ORM – Operational Risk Management, согласно 716-П ЦБ РФ), соответствием законодательству (требованиям НПА, включая 187-ФЗ, приказы ФСТЭК и др.) и стандартам (требованиям НМД, включая различные ISO, NIST, ГОСТ и др.).

В качестве используемых технологий ИИ и ML (Machine learning) активно применяются нейросети (включая рекуррентные архитектуры), алгоритмы решающих деревьев, методы градиентного спуска, методы опорных векторов и другие.

Методы ИИ и машинного обучения используются в Security Vision как независимо, так и совместно с линейными алгоритмами: правилами корреляции, сигнатурным анализом, деревьями решений и др. для получения максимально полной картины относительно объектов наблюдения или для выявления сработок/рекомендаций, где нет возможности применить набор заранее подготовленных правил/условий или они не дают максимально полный и адаптивный к изменениям результат.

Дополнительно к моделям искусственного интеллекта, компания разрабатывает и применяет в продуктах Security Vision алгоритмы централизованного управления моделями ИИ и ML, в том числе автоматическое переобучение моделей на данных Заказчика, а также автоматический подбор параметров моделей для более качественной адаптации и применения моделей к каждой уникальной инфраструктуре и изменениям внутри информационных потоков, изменениям легитимной и не легитимной активности. Что позволяет продуктам Security Vision автоматически адаптироваться под ландшафт данных Заказчика, выдавая более точные модели и более высокие результаты.

«Согласно классическому треугольнику связей, продукты Security Vision развиваются в направлении технологий реагирования (Security orchestration tools), процессов автоматизации (Governance, risk management and compliance) и аналитики больших данных (Security data analysis). Внедрение и совершенствование механизмов искусственного интеллекта – важнейшая составляющая этого развития, позволяющая обеспечить качественно более высокую эффективность в решении задач кибербезопасности по всем трем направлениям, что особенно актуально в свете растущего числа киберугроз и нехватки квалифицированных кадров у российских компаний. Теперь системы Security Vision первыми в своих классах на государственном уровне признаны использующими ИИ и ML. Это является для нас сильным стимулом, чтобы вести еще более активную работу по их развитию и, как следствие, по обеспечению информационной безопасности отечественных организаций», – прокомментировала директор по продуктам Security Vision Анна Олейникова.

Linux-ботнет SSHStalker старомоден: C2-коммуникации только по IRC

Специалисты по киберразведке из Flare обнаружили Linux-ботнет, операторы которого отдали предпочтение надежности, а не скрытности. Для наращивания потенциала SSHStalker использует шумные SSH-сканы и 15-летние уязвимости, для C2-связи — IRC.

Новобранец пока просто растет, либо проходит обкатку: боты подключаются к командному серверу и переходят в состояние простоя. Из возможностей монетизации выявлены сбор ключей AWS, сканирование сайтов, криптомайнинг и генерация DDoS-потока.

Первичный доступ к Linux-системам ботоводам обеспечивают автоматизированные SSH-сканы и брутфорс. С этой целью на хосты с открытым портом 22 устанавливается написанный на Go сканер, замаскированный под опенсорсную утилиту Nmap.

В ходе заражения также загружаются GCC для компиляции полезной нагрузки, IRC-боты с вшитыми адресами C2 и два архивных файла, GS и bootbou. Первый обеспечивает оркестрацию, второй — персистентность и непрерывность исполнения (создает cron-задачу на ежеминутный запуск основного процесса бота и перезапускает его в случае завершения).

Чтобы повысить привилегии на скомпрометированном хосте, используются эксплойты ядра, суммарно нацеленные на 16 уязвимостей времен Linux 2.6.x (2009-2010 годы).

 

Владельцы SSHStalker — предположительно выходцы из Румынии, на это указывает ряд найденных артефактов.

Исследователи также обнаружили файл со свежими результатами SSH-сканов (около 7 тыс. прогонов, все за прошлый месяц). Большинство из них ассоциируются с ресурсами Oracle Cloud в США, Евросоюзе и странах Азиатско-Тихоокеанского региона.

RSS: Новости на портале Anti-Malware.ru