Security Vision вывела на рынок новый продукт Next Generation SOAR

Security Vision вывела на рынок новый продукт Next Generation SOAR

Security Vision вывела на рынок новый продукт Next Generation SOAR

Security Vision Next Generation SOAR (NG SOAR) является композитом технологий и функций, сфокусированным прицельно на автоматическом обнаружении и решении киберинцидентов «на лету» в соответствии с полным циклом фаз обработки инцидента (NIST).

Функции Security Vision NG SOAR на разных фазах обработки инцидентов (NIST) решают задачи таких систем, как AM, VM, SIEM, IRP, LM, SGRC, SOAR, TIP, UEBA и др., прямо необходимые для фокусного реагирования на угрозы ИБ полного цикла. Это первый продукт такого рода на российском рынке.

В Security Vision NG SOAR реализованы механизмы детектирования инцидентов кибербезопасности и уникальные методы расследования и реагирования на основе технологии динамических плейбуков и машинного обучения. Все этапы обработки инцидентов максимально автоматизированы и созданы в рамках современного объектно-ориентированного подхода.

Основная идея концепции динамических плейбуков заключается в автоматической адаптации планов реагирования под конкретную ситуацию сработавшего инцидента: система автоматически анализирует событие, его атрибуты, технику атаки, задействованные объекты и на основании этой информации автоматически выстраивает нужный плейбук с помощью входящих в продукт атомарных сценариев реагирования. За счет ретроспективного анализа окрестностей инцидента Security Vision NG SOAR определяет цепочку атаки и выстраивает реагирование, исходя из полученных объектов.

Такой подход не требует сложной предварительной разработки и настройки множества плейбуков, оценки и предрасчета маршрутов атакующего, достижимости инфраструктуры, расчета вариантов атаки, построения карт атак и инфраструктуры сети. Система каждый раз собирает подходящий план обработки инцидента.

Security Vision NG SOAR может самостоятельно осуществить триаж (первичное категорирование) поступивших от СЗИ оповещений, приоритизировать инциденты, выбрать подходящий сценарий реагирования и оперативно предпринять контрмеры по локализации инцидента для недопущения его распространения и нанесения значимого ущерба компании. Взаимодействие с СЗИ для выполнения действий по активному реагированию (отправки управляющих сигналов) целесообразно выполнять современными способами через API-интеграции, при этом для СЗИ, не поддерживающих API, сохраняется возможность подключения к ним по SSH, RPC, MSSQL и т.д.

В Security Vision NG SOAR применяются методы машинного обучения и статистического анализа свойств инцидентов для выявления аномалий и возможных незамеченных ранее киберинцидентов в инфраструктуре (механизм UEBA – User and Entity Behavior Analytics), а также для прогнозирования дальнейших шагов атакующих и развития инцидента для выбора оптимальных мер противодействия. Функционал аналитики киберугроз (платформа Threat Intelligence Platform) и механизмы обогащения данных по инцидентам из внешних и внутренних (в т.ч. Data Lake) источников, доступные в NG SOAR, позволяют контекстуализировать сведения по инциденту, предоставляя ИБ-аналитику полную картину опасности и масштаба инцидента, затронутых сущностей и элементов инфраструктуры, а также взаимосвязь инцидентов, артефактов, индикаторов компрометации друг с другом.

Security Vision NG SOAR также обладает функционалом для решения одной из важнейших для многих российских компаний задач – формирования и отправки отчетности по киберинцидентам в НКЦКИ (через систему ГосСОПКА), ФинЦЕРТ (через интерфейс АСОИ), Роскомнадзор и в отраслевые CERT. Для автоматизации такого взаимодействия Security Vision NG SOAR предлагает встроенный функционал для отправки уведомлений и обмена данными с указанными структурами, а также для создания внутренней отчетности и визуализации состояния киберзащищенности компании в целях обеспечения ситуационной осведомленности руководителей.

NG SOAR базируется на единой платформе Security Vision. Заказчикам доступны все преимущества платформы, в том числе широкие возможности кастомизации.

В Сеть выложили базу с 6,8 млрд адресов электронной почты

На одном из популярных форумов для киберпреступников появился интересный пост: пользователь под ником Adkka72424 заявил, что собрал базу из 6,8 млрд уникальных адресов электронной почты. По его словам, на это ушло несколько месяцев; он выгружал данные из логов инфостилеров, ULP-коллекций и различных баз, циркулирующих в Сети.

Цифра звучит почти фантастически. Однако исследователи Cybernews изучили массив объёмом около 150 ГБ и пришли к несколько иным выводам.

Формально автор не соврал: в файле действительно более 6,8 млрд строк. Но внутри оказалось множество дубликатов и откровенно невалидных адресов. После «очистки» реальное количество рабочих имейлов, по оценке экспертов, может составлять около 3 млрд.

 

Даже если это «всего лишь» 3 млрд, масштаб всё равно впечатляющий. В эпоху автоматизации фишинговых кампаний и атак вида «credential stuffing» объём решает многое. При конверсии всего 0,001% из трёх миллиардов злоумышленники теоретически могут получить около 30 тысяч потенциальных жертв. Для массовых рассылок этого более чем достаточно.

 

Сам автор публикации утверждает, что хотел «повысить осведомлённость» и привлечь внимание эксперта по утечкам Троя Ханта. Параллельно он дал традиционный совет пользователям: сменить пароли и включить двухфакторную аутентификацию. Впрочем, по комментариям на форуме видно, что аудитория интересуется базой прежде всего как инструментом для кросс-проверки других утечек: сопоставляя записи, злоумышленники могут быстрее находить «свежие» скомпрометированные аккаунты и экономить время.

RSS: Новости на портале Anti-Malware.ru