Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Новый вектор атаки извлекает данные из нажатий клавиш с точностью 95%

Группа исследователей из университетов Великобритании подготовила модель обучения, которая может извлекать данные из звука нажатий клавиш клавиатуры. По словам специалистов, в тестах точность составила 95%.

Интересно, что при использовании Zoom для обучения алгоритма точность упала до 93%, однако это по-прежнему очень высокий процент и фактически рекорд для таких условий.

Подобные атаки критически отражаются на безопасности данных, так как с их помощью злоумышленники могут вытащить пароли, сообщения и другую личную информацию.

Кроме того, стоит учитывать, что у акустических атак есть ощутимое преимущество перед атаками по сторонним каналам: последние всегда требуют специальных условий и, как правило, ограничиваются дистанцией и количеством передаваемых данных; а вот акустические стали гораздо проще в реализации из-за массы устройств с микрофонами, обеспечивающими качественную передачу звука.

Первым шагом в описанном исследователями векторе будет запись нажатий клавиш, именно эти данные используются для тренировки алгоритма. В реальном сценарии этого можно добиться так: заразить мобильное устройство жертвы вредоносной программой и использовать микрофон смартфона для записи нажатий клавиш.

Есть и другой подход: записать нужный звук в процессе звонка по Zoom. Обучая модель, специалисты нажимали 36 клавиш на MacBook Pro, каждую 25 раз, и записывали звук, издаваемый каждой клавишей.

 

После этого эксперты формировали спектрограммы, визуализирующие разницу между звуками. Эти спектрограммы тренировали CoAtNet, классификатор изображений.

В тестах исследователей использовалась клавиатура Apple, которой корпорация оснащала все свои ноутбуки, выпущенные за последние пару лет. В 17 сантиметрах от лэптопа лежал iPhone 13 mini, а также использовался Zoom.

 

Согласно отчету (PDF), CoANet удалось достичь 95% точности при использовании рядом лежащего iPhone, 93% — при использовании Zoom и 91,7%, если в дело вступал Skype.

Минцифры создаст полигон для тестирования систем с ИИ на безопасность

Минцифры планирует создать киберполигон для тестирования систем с искусственным интеллектом (ИИ) на безопасность. В первую очередь речь идёт о решениях, предназначенных для применения на объектах критической инфраструктуры, а также о системах с функцией принятия решений.

О том, что министерство ведёт работу над созданием такого полигона, сообщил РБК со ссылкой на несколько источников.

Площадка будет использоваться для тестирования ИИ-систем, которые в дальнейшем должны пройти сертификацию ФСТЭК и ФСБ России. Это предусмотрено правительственным законопроектом «О применении систем искусственного интеллекта органами, входящими в единую систему публичной власти, и внесении изменений в отдельные законодательные акты».

Документ вводит четыре уровня критичности ИИ-систем:

  • минимальный — влияние на безопасность отсутствует или минимально;
  • ограниченный;
  • высокий — относится к системам, используемым на объектах критической информационной инфраструктуры;
  • критический — системы, способные угрожать жизни и здоровью людей или безопасности государства, а также автономные комплексы, принимающие самостоятельные решения.

Определять уровень критичности будет Национальный центр искусственного интеллекта в сфере госуправления при правительстве. Эта же структура займётся ведением реестра сертифицированных ИИ-систем.

Конкретные требования к сертификации планируется закрепить в отдельных нормативных документах, которые пока находятся в разработке. На текущем этапе единственным обязательным условием является включение программного обеспечения в реестр Минцифры.

По данным «Российской газеты», распространять новые требования на коммерческие ИИ-решения не планируется. При этом в аппарате первого вице-премьера Дмитрия Григоренко пояснили, что ключевая цель законопроекта — снизить риски применения ИИ в сферах с высокой ценой ошибки, включая здравоохранение, судопроизводство, общественную безопасность и образование.

RSS: Новости на портале Anti-Malware.ru